

(Knowledge for Development) KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER MAIN EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE

COURSE CODE: S

STA 448

COURSE TITLE:

STOCHASTIC PROCESSES II

DATE:

1/10/2021

TIME: 2:00 PM - 4:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION 1: (30 Marks)

- a) Define the following terms
 - i. Transient state [1mk]
 - ii. Ergodic state [1mk]
 iii. Recurrent state [1mk]
- b) Let X have the distribution of the geometric distribution of the form $Prob(X = k) = p_k = q^{k-2} p$, k = 2, 3, 4, ... Obtain the probability generating function and hence find its mean and variance [9mks]
- c) Given that random variable X have probability density function $pr(X=k)=p_k$ k=0,1,2,3,... with probability generating function $P(S)=\sum_{i=1}^{\infty}p_ks^k$ and $q_k=p_k(X=k)=p_{k+1}+p_{k+2}+p_{k+3}+\cdots$ with generating function $\phi(s)=\sum_{i=1}^{\infty}q_ks^k$ Show that $(1-s)\phi(s)=1-p(s)$ and that $E(X)=\phi(1)$ [6mks]
- d) Find the generating function for the sequence {0, 0, 0, 7, 7, 7, 7, ...}
 [2mks]
- e) Classify the state of the following transitional matrix of the markov chains

	$\boldsymbol{E_1}$	$\boldsymbol{E_2}$	E_3	$\boldsymbol{E_4}$	$\boldsymbol{E_5}$	
E_1	1/2 1/2 1/2 :	1/2	0	0	0]
$\boldsymbol{E_2}$	1/2	0	1/2	0	0	
$\boldsymbol{E_3}$	1/2	0	0	1/2	0 0 :	
:	:		:	:	:	:
	1/2	0	0	0	0	••••

[10mks]

QUESTION 2: (20 Marks)

a) Let X have a Bernoulli distribution with parameters p and q given by $P_r(X = k) = P_k = P^k q^{1-k}$, q = 1 - p, k = 0, 1 Obtain the probability generating function of X and hence find its mean and variance.

b) The difference – differential equation for pure birth process are

The difference – differential
$$q_1$$
 $p_n(t) = \lambda_n p_n(t) + \lambda_{n-1} p_{n-1}(t)$, $n \ge 1$ and $p_0'(t) = -\lambda_0 p_0(t)$, $n = 0$.

Obtain $P_n(t)$ for a non – stationary pure birth process (Poisson process) with $\lambda_n = \lambda$ given that

$$P_0(t) = \begin{cases} 1 & for \ n = 0 \\ 0 & otherwise \end{cases}$$

Hence obtain its mean and variance

[14mks]

QUESTION 3: (20 Marks)

a) Let X have a Poisson distribution with parameter λ i.e.

Prob
$$(X = k) = p_k = \frac{e^{-\lambda} \lambda^k}{k!}, \ k = 0, 1, 2, 3, ...$$

Obtain the probability generating function of X and hence obtain its mean and variance

b) Using Feller's method, find the mean and variance of the difference differential equation

differential equation
$$P'_n(t) = -n(\lambda + \mu)p_n(t) + (n-1)\lambda p_{n-1}(t) + \mu(n+1)p_{n+1}(t),$$
 $n \ge 1$ given

$$n \ge 1$$
 given $m_1(t) = \sum_{n=0}^{\infty} n p_n(t)$, $m_2(t) = \sum_{n=0}^{\infty} n^2 p_n(t)$ and $m_1(t) = \sum_{n=0}^{\infty} n p_n(t)$, we distinguish on $n_1(0) = 0$.

$$m_1(t) = \sum_{n=0}^{\infty} n p_n(t)$$
, $m_2(t) = \sum_{n=0}^{\infty} n p_n(t)$ and $m_3(t) = \sum_{n=0}^{\infty} n^3 p_n(t)$ conditioned on $p_1(0) = 0$, $p_n(0) = 0$, $n \neq 0$ [14mks]

QUESTION 4: (20 Marks)

a) Define the following terms

[1mk] i. Absorbing state [1mk]

Irreducible markov chains [1mk] ii. Period of a state of markov chains

b) Consider a series of Bernoulli trials with probability of success P. Suppose that X denote the number of failures preceding the first success and Y the number of failures following the first success and preceding the second success. The joint pdf of X and Y is given by

 $P_{ij} = pr\{X = j, Y = k\} = q^{j+k}p^2$ j, k = 0, 1, 2, 3, ...

Obtain the Bivariate probability generating function of X and Y

[2mks]

Obtain the marginal probability generating function of X[2mks]

ii. [2mks] Obtain the mean and variance of X

iii. [2mks] Obtain the mean and variance of Y iv.

c) Classify the state of the following stochastic markov chain

$$\begin{array}{cccc}
E_1 & E_2 & E_3 \\
E_1 & 1/2 & 1/2 \\
E_2 & 1/2 & 0 & 1/2 \\
E_3 & 1/2 & 1/2 & 0
\end{array}$$

[9mks]

QUESTION 5: (20 Marks)

The difference – differential equation for the simple birth – death processes

are
$$P_n'(t) = -n(\lambda + \mu)p_n(t) + (n-1)\lambda p_{n-1}(t) + (n+1)\mu p_{n+1}(t), \ n \geq 1$$
 and

$$P_0'(t) = \mu p_1(t), \ n = 0$$

Obtain $P_n(t)$ for a simple Birth – Death process with $\lambda_n=n\lambda$ and $\mu_n=n\mu$

given that
$$P_n(0) = \begin{cases} 1 & \text{for } n = 1 \\ 0 & \text{for } n = 0 \end{cases}$$