

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2022/2023 ACADEMIC YEAR

FIRST SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF MASTER OF SCIENCE IN PHYSICS

COURSE CODE: SPH 811

COURSE TITLE: MATHEMATICAL PHYSICS

DURATION: 3 HOURS

DATE: 14/12/2022 TIME: 9:00-11:00AM

INSTRUCTIONS TO CANDIDATES

- Answer ANY THREE QUESTIONS.
- Each question carries 20 MARKS.
- ALL Symbols have their usual meaning
- $\int_0^\infty r^{-1} e^{-r^2} dr = 0$

QUESTION ONE (20 MARKS)

- a) Show that $\vec{\nabla} r^n = n r^{n-2} \vec{r}$. (5marks)
- b) A vector field is given by $\vec{A} = (x_1 + 2x_2 + ax_3)\hat{e}_1 + (bx_1 3x_2 x_3)\hat{e}_2 + (4x_1 + cx_2 + 2x_3)\hat{e}_3$. Find the constants a, b and c such that the vector field is irrotational.

(3marks)

- c) Prove that $\vec{\nabla} \times (\vec{\nabla} \emptyset) = 0$. (2marks)
- d) Show that $B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$. (4marks)
- e) Evaluate using the properties of beta and gamma function the integral $\int_0^1 x^5 (1-x)^4 dx$. (2marks)
- f) Use the Stokes vector integral theorem to verify the Maxwell's equation of electromagnetism i.e. $\vec{\nabla} \times \vec{B} = \mu_o \vec{J}$. (4marks)

QUESTION TWO (20 MARKS)

- a) Given $\vec{V}_1 = (1,1,1,1)$, $\vec{V}_2 = (1,1,1,0)$, $\vec{V}_3 = (1,1,0,0)$ and $\vec{V}_4 = (1,0,0,0)$ is a basis of \mathbb{R}^4 , construct by using G-S procedure an orthonormal basis for \mathbb{R}^4 . (8marks)
- b) Determine the eigen values and the corresponding eigen vectors of the matrix.

$$\begin{pmatrix} 4 & 0 & 1 \\ -1 & -6 & -2 \\ 5 & 0 & 0 \end{pmatrix}$$
 (8marks)

c) Find the inverse Laplace transform of $F(s) = \frac{2-5s}{(s-6)(s^2+11)}$. (4marks)

QUESTION THREE (20 MARKS)

- a) Evaluate by Cauchy's integral formula $\oint \frac{e^{2z}}{(z+1)^4} dz$ where C is any simple closed curve for the cases,
 - i. C does not enclose z = -1. (2marks)
 - ii. C encloses the point z = -1. (4marks)
- b) Use the gamma function to evaluate $\Gamma\left(\frac{1}{2}\right)$. (9marks)
- c) Use the result in (a) above to evaluate $\int_0^\infty x^{\frac{1}{2}} e^{-x^2} dx$. (5marks)

QUESTION FOUR (20 MARKS)

- a) Use the calculus of residues to show that $\int_0^{2\pi} \frac{d\theta}{a + b \cos \theta} = \frac{2\pi}{\sqrt{a^2 b^2}}$ where a > b > 0 (5 marks)
- b) Obtain the first and second forms of the Greens Theorem. (5marks)
- c) Solve the differential equation $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = e^{3t}$ given y(0) = 1 and y'(0) = 0 (5 marks)

d) The graph of an electrical signal is given by $i = 5 \sin \frac{\theta}{2}$ for $0 \le \theta \le 2\pi$. Obtain the Fourier series that would represent this alternating current. (5marks)

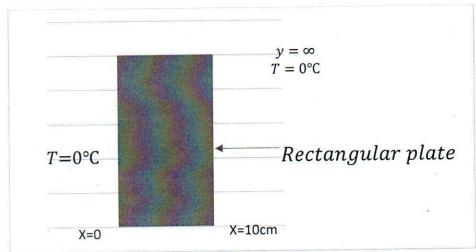
QUESTION FIVE (20 MARKS)

a) The equation of a wave is given as $\nabla^2 u = \frac{1}{v^2} \frac{\partial^2 y}{\partial x^2}$. Use the method of separation of variables to find the amplitude at any given time of a standing wave produced on a string. (6marks)

b) Using the Schrodinger equation derive the ground state wave function for a free particle in a one-dimensional case. (6marks)

c) A long rectangular plate has its long sides and the far end at 0°C and the base at 100°C. The width of the plate is 10cm. Find the steady state temperature inside the plate.

(8marks)



e) Given that $\vec{V}_1 = (2, -1, 0)$, $\vec{V}_2 = (1, 0, -1)$ and $\vec{V}_3 = (3, 7, -1)$ is a basis of R^3 . Find the orthogonal basis by Gram-Schmidt procedure hence determine the orthonormal basis (6marks)

Table 15.2 Laplace Transforms

f(s)	F(t)	Limitation
1.1	$\delta(t)$	Singularity at +0
2. $\frac{1}{s}$	1	s > 0
3. $\frac{n!}{s^{n+1}}$	t ⁿ	s > 0
s^{n+1}		n > -1
4. $\frac{1}{s-k}$	e^{kt}	s > k
5. 1	te ^{kt}	s > k
4. $\frac{1}{s-k}$ 5. $\frac{1}{(s-k)^2}$ 6. $\frac{s}{s^2-k^2}$	cosh kt	s > k
$7. \frac{k}{s^2 - k^2}$	sinh kt	s > k
$8. \frac{s^2 - k^2}{s^2 + k^2}$	$\cos kt$	s > 0
$9. \frac{k}{s^2 + k^2}$	sin kt	s > 0
10. $\frac{s-a}{(s-a)^2 + k^2}$ 11. $\frac{k}{(s-a)^2 + k^2}$	$e^{at}\cos kt$	s > a
$11. \frac{k}{(s-a)^2+k^2}$	$e^{at} \sin kt$	s > a
$12. \frac{s^2 - k^2}{(s^2 + k^2)^2}$	t cos kt	s > 0
13. $\frac{2ks}{(s^2+k^2)^2}$	t sin kt	s > 0