KIBABII UNIVERSITY ### UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR # FIRST YEAR FIRST SEMESTER MAIN EXAMINATIONS FOR THE DEGREE OF BSC CHEMISTRY, BSC PHYSICS, BSC RENEWABLE ENERGY AND BIOFUELS TECHNOLOGY, BSC AGRICULTURE AND BIOTECHNOLOGY COURSE CODE: SCH 111 **COURSE TITLE:** INTRODUCTION TO INORGANIC CHEMISTRY DATE: 14/12/2022 TIME: 2:00-4:00PM #### **INSTRUCTIONS TO CANDIDATES:** - Answer Question ONE (Compulsory) and any other TWO (2) questions - Indicate answered questions on the front cover of your answer booklet - Start each question on a new page and make sure the question's number is written on each page TIME: 2 Hours Constants: 1 mole = 6.02×10^{23} particles This paper consists of 4 printed pages. Please Turn Over #### Question 1 [30 Marks] | i. | Describe the law of conservation of mass | [2 Marks] | |-------|--|-----------| | ii. | Define an atom | [2 Marks] | | iii. | Describe subatomic particles and their properties | [3 Marks] | | iv. | Explain the difference between an element and a molecule | [4 Marks] | | V. | Name two p-block elements which are gases excluding noble gases or a h | nalogens. | | | | [4 Marks] | | vi. | Describe electrovalent bonds | [2 Marks] | | vii. | Explain the difference between a dative bond and a covalent bond | [2 Marks] | | viii. | Discuss the significance of each quantum number | [4 Marks] | | ix. | Describe three characteristics of electromagnetic radiation | [6 Marks] | | Χ. | How many degenerate orbitals are found in the 5g subshell? | [1 Mark] | #### Question 2 [20 Marks] Describe the following atomic theories indicating their postulates and limitations | 1. | Thompson's theory | [6 Marks] | |------|------------------------|-----------| | ii. | Rutherford's theory | [6 Marks] | | iii. | Dalton's atomic theory | [8 Marks] | ### Question 3 [20 Marks] - Discuss the three basic rules or principles that govern the distribution of electrons in orbitals [6 Marks] - ii. Using examples, explain why all transition elements are d-block elements but all d-block elements are not transition elements. [5 Marks] - iii. Give the symbols of each atom below, including the atomic number and the mass number. [4 Marks] - a. tin atom with 69 neutrons - b. silver atom with 62 neutrons - iv. Identify the isotope of Chromium with the same number of neutrons as Zn-65 [5 Marks] #### Question 4 [20 Marks] - i. Describe the basis for arrangement of elements in the periodic table [6 Marks] ii. Oganesson (Og) is a synthetic element with atomic number 118 describe the period and group to which it belongs [4 Marks] - iii. Consider the elements of groups 14, 15 and 16 based on their positions in the periodic table, classify them as either metals, non metals or metalloids [8 Marks] - iv. Name the groups that comprise the 's' block of elements. [2 Marks] #### Question 5 [20 Marks] - i. Following Lewis theory show the formation of a nitrogen molecule [6 Marks] - ii. Discuss the basic postulates of VSEPR theory [6 Marks] - iii. Discuss hybridization [4 Marks] - iv. Determine the number of atoms and the mass of Molybdenum in 4.60×10^{-4} moles [4 Marks] | IA | | | 10 | PER | IOL | OIC' | ГАВ | LE | OF T | HE | ELE | EME | NT | S | |--------------------------|--------------------------|-------------------------|---------------------------|---------------------------|---------------------------|---------------------------|------------------------|---------------------------|--------------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------------| | 1
H | 2
IIA | | | | | | | | | | | 13
IIIA | 14
IVA | 15
VA | | 3
Li | Be | | | | | | | | | | | 5
B | 6
C | 7
N | | 6.94 | 9.01 | | | | | _ | | | | | 12 | 13
Al | 12.01
14
Si | 14.
15
P | | Na
22.99 | Mg | 3
IIIB | 4
IVB | 5
VB | 6
VIB | 7
VIIB | 8 | -VIIIB - | 10 | II
IB | 12
IIB | 26.98 | 28.09 | 30. | | 19
K
39.10 | 20
Ca | 21
Sc
44.96 | 22
Ti | 23
V
50.94 | 24
Cr
52.00 | 25
Mn
59.94 | 26
Fe 55.85 | 27
Co
58.93 | 28
Ni
58.69 | 29
Cu
63.55 | 30
Zn
65.39 | 31
Ga
69.72 | 32
Ge
72.59 | 3:
A
74. | | 37
Rb
85.47 | 38
Sr
87.62 | 39
Y
88.91 | 40 Zr 91.22 | 41
Nb
92.91 | 42
Mo
95.94 | 43
Tc | 44
Ru
101.1 | 45
Rh
102.91 | 46
Pd
106.42 | 47
Ag
107.87 | 48
Cd
112.41 | 49
In
114.82 | 50
Sn
118.71 | 5
S'
121 | | 55
Cs | 56
Ba | 57
* La | 72
Hf
178.49 | 73
Ta
180.95 | 74
W
183.85 | 75
Re
186.21 | 76
Os
190.2 | 77
Ir
192.2 | 78
Pt
195.08 | 79
Au
196.97 | 80
Hg
200.59 | 81
T1
204.38 | 82
Pb
207.2 | 8
B
208 | | 87
Fr (223) | 88
Ra
226.02 | 89
†Ac
227.03 | 104
Rf
(261) | 105
Db
(262) | 106
Sg
(266) | 107
Bh
(264) | 108
Hs (277) | 109
Mt
(268) | 110
Ds (271) | 111
Rg (272) | | | | |