

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF BSC CHEMISTRY, BSC PHYSICS, BSC RENEWABLE ENERGY AND BIOFUELS TECHNOLOGY, BSC AGRICULTURE AND BIOTECHNOLOGY

COURSE CODE: SCH 111

COURSE TITLE: INTRODUCTION TO INORGANIC CHEMISTRY

DATE: 14/12/2022 TIME: 2:00-4:00PM

INSTRUCTIONS TO CANDIDATES:

- Answer Question ONE (Compulsory) and any other TWO (2) questions
- Indicate answered questions on the front cover of your answer booklet
- Start each question on a new page and make sure the question's number is written on each page

TIME: 2 Hours

Constants: 1 mole = 6.02×10^{23} particles

This paper consists of 4 printed pages. Please Turn Over

Question 1 [30 Marks]

i.	Describe the law of conservation of mass	[2 Marks]
ii.	Define an atom	[2 Marks]
iii.	Describe subatomic particles and their properties	[3 Marks]
iv.	Explain the difference between an element and a molecule	[4 Marks]
V.	Name two p-block elements which are gases excluding noble gases or a h	nalogens.
		[4 Marks]
vi.	Describe electrovalent bonds	[2 Marks]
vii.	Explain the difference between a dative bond and a covalent bond	[2 Marks]
viii.	Discuss the significance of each quantum number	[4 Marks]
ix.	Describe three characteristics of electromagnetic radiation	[6 Marks]
Χ.	How many degenerate orbitals are found in the 5g subshell?	[1 Mark]

Question 2 [20 Marks]

Describe the following atomic theories indicating their postulates and limitations

1.	Thompson's theory	[6 Marks]
ii.	Rutherford's theory	[6 Marks]
iii.	Dalton's atomic theory	[8 Marks]

Question 3 [20 Marks]

- Discuss the three basic rules or principles that govern the distribution of electrons in orbitals
 [6 Marks]
- ii. Using examples, explain why all transition elements are d-block elements but all d-block elements are not transition elements. [5 Marks]
- iii. Give the symbols of each atom below, including the atomic number and the mass number.

[4 Marks]

- a. tin atom with 69 neutrons
- b. silver atom with 62 neutrons
- iv. Identify the isotope of Chromium with the same number of neutrons as Zn-65

[5 Marks]

Question 4 [20 Marks]

- i. Describe the basis for arrangement of elements in the periodic table [6 Marks]
 ii. Oganesson (Og) is a synthetic element with atomic number 118 describe the period and group to which it belongs [4 Marks]
- iii. Consider the elements of groups 14, 15 and 16 based on their positions in the periodic table, classify them as either metals, non metals or metalloids [8 Marks]
- iv. Name the groups that comprise the 's' block of elements. [2 Marks]

Question 5 [20 Marks]

- i. Following Lewis theory show the formation of a nitrogen molecule [6 Marks]
- ii. Discuss the basic postulates of VSEPR theory [6 Marks]
- iii. Discuss hybridization [4 Marks]
- iv. Determine the number of atoms and the mass of Molybdenum in 4.60×10^{-4} moles [4 Marks]

IA			10	PER	IOL	OIC'	ГАВ	LE	OF T	HE	ELE	EME	NT	S
1 H	2 IIA											13 IIIA	14 IVA	15 VA
3 Li	Be											5 B	6 C	7 N
6.94	9.01					_					12	13 Al	12.01 14 Si	14. 15 P
Na 22.99	Mg	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8	-VIIIB -	10	II IB	12 IIB	26.98	28.09	30.
19 K 39.10	20 Ca	21 Sc 44.96	22 Ti	23 V 50.94	24 Cr 52.00	25 Mn 59.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.59	3: A 74.
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc	44 Ru 101.1	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	5 S' 121
55 Cs	56 Ba	57 * La	72 Hf 178.49	73 Ta 180.95	74 W 183.85	75 Re 186.21	76 Os 190.2	77 Ir 192.2	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 T1 204.38	82 Pb 207.2	8 B 208
87 Fr (223)	88 Ra 226.02	89 †Ac 227.03	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mt (268)	110 Ds (271)	111 Rg (272)				