

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF BED (Science)

COURSE CODE: SCH 215

Sen 213

COURSE TITLE: INTRODUCTION

TO KINETICS

AND

THERMODYNAMICS

DURATION: 2 HOURS

DATE: 4/02/2022

TIME: 2-4PM

INSTRUCTIONS TO CANDIDATES

- Answer **QUESTION ONE** (Compulsory) and any other two (2) Questions.
- Indicate **answered questions** on the front cover.
- Start every question on a new page and make sure question's number is written on each page.
- You are provided with graph papers where necessary.

This paper consists of 3 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

QUESTION ONE (30 Marks)

(a)State the following laws

(3Marks)

- i. Boyle's law
- ii. Charles law
- iii. Avogadro's law
- (b) Gases are divided into ideal and real gases. State the two conditions under which real gases tend to obey ideal gas laws (2Marks)
- (c) (i) Define heterogeneous catalysis

(1Mark)

(ii) Give any two examples of heterogeneous catalysis

(2Marks)

(d) Mercuric (II) chloride reacted with dichromate solution as shown in the equation below; 2HgCl_{2 (aq)} + C₂O₄²⁻ (aq) → Hg₂Cl_{2 (s)} + 2Cl⁻ (aq) +2CO_{2 (g)}

The table below shows the results involving different concentrations of reactants.

Experiment number	[HgCl ₂](M)	$[C_2O_4^{2-}](M)$	Initial rate (mol/S) 2.1 X 10 ⁻⁷		
1	0.096	0.13			
2	0.096	0.21	5.5 X 10 ⁻⁷		
3	0.171	0.21	9.8 X 10 ⁻⁷		

- i. Determine the order of the reaction with respect to $HgCl_2$ and with respect to $C_2O_4^{2-}$ (2Marks)
- ii. What is the overall order of the reaction?

(1Mark)

iii. Calculate the rate constant

(2Marks)

(e) Using the information given in equations a, b, and c below, calculate the enthalpy of the following reaction (3Marks)

$$C + 2H_2 \rightarrow CH_4$$
 ??kJ/mol

$$C + O_2 \rightarrow CO_2 \Delta H = -394 \, kJ/mol \dots (a)$$

$$H_2 + \frac{1}{2}O_2 \to H_2O \Delta H = -245 \text{ kJ} \dots (b)$$

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O = -1187.8kJ/mol.....(c)$$

- (f) State the first law of thermodynamics and write its mathematical expression (3Marks)
- (g) Let us consider a first order reaction of the type

$$A \longrightarrow Products$$

Initial concⁿ a

0

Final conc. a - x

X

Show that its integrated rate law is given by $k = \frac{1}{t} \ln \left(\frac{a}{a-x} \right)$

(4Marks)

(h) (a) Define the following terms

(3Marks)

- i. Chemical kinetics
- ii. Thermodynamics
- iii. Isothermal process
- (i) Show that the half-life of a first order reaction of the form $A \rightarrow Products$ is

$$t_{\frac{1}{2}} = \frac{0.693}{k}$$

(4Marks)

QUESTION TWO (20 Marks)

(a) Using E = q - W show that heat of an isothermal reversible process is

 $q = nRT ln \frac{V_2}{V_1} oR \ nRT ln \frac{P_1}{P_2}$ (8Marks)

(b) Consider a two-step reaction mechanism suggested below and use it to answer the questions that follows;

Step 1 Slow $NO_{2(g)} + NO_{2(g)} \rightarrow NO_{3(g)} + NO_{(g)}$ Step 2 Fast $CO_{(g)} + NO_{3(g)} \rightarrow CO_{2(g)} + NO_{2(g)}$

- i) Derive the overall reaction (2Marks)
- ii) Identifying the reaction intermediate (1Mark)
- iii) Define the term reaction intermediate (2Marks)
- iv) Identify the rate determining step (2Marks)
- v) Derive the rate law for the above reaction (1Mark)
- (c) The decomposition of carbon disulfide, CS₂, to carbon monosulfide, CS, and sulfur is first order with $k = 2.8 \times 10^{-7} \text{ s}^{-1}$ at 100°C. What is the half-life of this reaction at 100°C?

(4marks)

QUESTION THREE (20 Marks)

- (a) Describe the graphical method of determining rate constants (10Marks)
- (b) Using (E = q W), show that work done by an isothermal reversible process is expressed as $W = -nRT \ln \frac{V_2}{V_1}$ (5Marks)
- (c) State the five common characteristics of catalytic reactions (5Marks)

QUESTION FOUR (20 Marks)

(a) The gas-phase reaction between methane ($\mathrm{CH_4}$) and diatomic sulphur ($\mathrm{S_2}$) is given by the equation

 $CH_4(g) + 2S_2(g) \longrightarrow CS_2(g) + 2H_2S(g)$

At 550°C the rate constant for this reaction is 1.1 $l mol^{-1}$ sec and at 625°C the rate constant is 6.4 $l mol^{-1}$ sec. Calculate E_a for this reaction (5Marks)

- (c)(i) What is isothermal reversible process (2Marks)
- (ii) 2 dm³ of hydrogen initially at stp are expanded isothermally to a volume of 4dm³. Calculate work done assuming ideal behaviour of hydrogen (5Marks)
- (d) Derive the two numerical values of gas constant R using ideal gas

equation pv = nRT (5Marks)

(e) State the three thermodynamic systems (3Marks)

QUESTION FIVE (20 Marks)

(a) The following results were obtained from a study of the isomerization of cyclopropane to propene in the gas phase at 433°C

Time(hours)	0	2	5	10	20	30
% of Cyclopropane remaining	100	91	79	63	40	25

- (i) Show that the reaction is a first order with respect to cyclopropane (5Marks)
- (ii) Calculate the rate constant for the reaction (2Marks)
- (b) State the three types of elementally reactions
 (c) Describe the Michaelis-Menten mechanism
 (10Marks)