

(Knowledge for Development)

KIBABII UNIVERSITY UNIVERSITY EXAMINATIONS **2021/2022 ACADEMIC YEAR** SECOND YEAR FIRST SEMESTER **EXAMINATION** FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE:

MAA 212 / MAT 223

COURSE TITLE: DYNAMICS 1

DATE: 04/02/2022

TIME: 9:00 AM - 11:00 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

- (3mks) a) Definition
 - A vector i)
 - A unit vector
- b) Given $r_1 = 3i + 2j k$, $r_2 = 2i 4j 3k$ and $r_3 = -i + 2j + 2k$. (5mks) Find;
 - i) $|r_2|$
 - $|r_1 + r_2 + r_3|$ ii)
- c) If $r_1 = 2i j + k$, $r_2 = i + 3j 2k$, $r_3 = -2i + j 3k$ and $r_4 = 3i + 2j + 5k$. (6mks) Find scalars a, b and c such that $r_4 = ar_1 + br_2 + cr_3$
- d) Find the angle between $\vec{A} = 2i + 2j k$ and $\vec{B} = 6i 3j + 2k$ (5mks)
- e) If $\vec{A} = 2i j + 2k$ and $\vec{B} = -i 3k$. Find the unit vector perpendicular to both \vec{A} and \vec{B} (4mks)
- f) Given a = 2i j 2k, b = 3i 4k, c = i 5j + 3k. (7mks) Verify that $a \cdot (b \times c) = (a \times b) \cdot c$

QUESTION TWO (20 MKS)

- a) A particle moving with initial velocity v = 50j undergoes an acceleration a = $(35 + 2t^3)i + (4 - t^2)j$. What are the particles position and velocity after 3 seconds assuming that it starts at the origin?
- b) A fish swimming in a horizontal plane has a velocity $v_0 = 4i + j$ at apoint in the ocean whose position vector is $r_0 = 10i - 4j$ relative to a stationary rock at the shore. After the fish swims with constant acceleration for 20 secs, its velocity v = 20i - 5j.
 - (5mks) What are the components of acceleration?
 - ii) What is the direction of the acceleration with respect to the fixed x axis? (3mks)
 - iii) Where is the fish at t = 25 secs, what is its speed and in what direction is it moving (4mks)

QUESTION THREE (20MKS)

- a) A ball is thrown with a speed of 25m/s at an angle of 40° above the horizontal directly towards a wall. The wall is 22m from the release point of the ball.
 - How long does the ball take to reach the wall i)

(4mks)

How far above the release point does the ball heat the wall ii)

(4mks

- What are the horizontal and vertical components of its velocity as it heats the wall iii) (4mks)
- When it heats, has it passed the highest point on its trajectory. Explain (4mks) iv)

b) A wheel rotates with angular acceleration given by $\alpha(t) = 4at^3 - 3bt^2$ where t is the time and a and b are constants. If the wheel has an initial angular velocity ω_0 . Write equations for the

i) Angular velocity

(4mks)

ii) The angle turned as a function of time

(4mks)

QUESTION FOUR (20mks)

- a) A particle sliding a long a radial groove in a turn table has polar co- ordinates at time t, r = ct, and $\theta = \cap t$ where c and \cap are positive constants. Find the velocity and acceleration vectors of the particle at time t and find the speed of the particle at time t. Deduce that t > 0, the angle between the velocity and acceleration vectors are always acute. (12mks)
- b) The angular acceleration of a body rotating about an axis is directly proportional to the time when t=0, the angular velocity of the body is -15rad/sec given that $\omega=0$ and $\theta=16$ rad when t=5 sec. Determine the equation of the motion of the body (8mks)

QUESTION FIVE (20MKS)

- a) A rigid body is rotating with a constant angular speed 7 rads/sec about a fixed axis through the points A (2,3,-1) and B (-4,0,1) distances being measured in centimeters. The rotation is left handed relative to \overrightarrow{AB} . Find the instantaneous velocity, speed and acceleration of the particle P of the body at the point (-3,3,5) (12mks)
- b) A grinding wheel is attached to a shaft of an electrical motor of rated speed 1500rpm, when the power is switched on, the units attains the rated speed in 5 secs and when the power is switched off the unit comes to rest in 90 secs. Assuming uniform accelerated motion, determine the number of revolutions the unit turns. (8mks)
 - i) To attain the rated speed
 - ii) To come to rest