

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR SECOND YEAR FIRST SEMESTER MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MAP 212/MAP 222/MAT204

COURSE TITLE: REAL ANALYSIS I

DATE: 03/02/2022

TIME: 2:00 PM - 4:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE COMPULSORY (30 MARKS)

a) Define the following terms

i	Disjoint sets	(2marks)
	Disjoint sets	

- ii. Ordered field (2marks)
- iii. Metric space (5marks)
- b) Prove that for some $n \in \mathbb{N}$, $\sum_{k=1}^{n} k^3 = \frac{1}{4} n^2 (n+1)^2$ (6marks)
- c) Prove that every non empty set A of natural numbers has at least element $m \in A$ such that for all $k \in A$, then either m < k or m = k (6marks)
- d) Show that $|a| + |b| \ge |a + b|$ (4marks)
- e) Show that the power set $P(\mathbb{N})$ of \mathbb{N} is countable (5marks)

OUESTION TWO (20 MARKS)

- a) Let \mathbb{F} be a field and $x, y \in \mathbb{F}$. Show that $|x| |y| \le |x y|$. (4marks)
- b) Define a function $f: \mathbb{N} \to \mathbb{Z}$ as $f(n) = \begin{cases} \frac{n+1}{2} & \text{where n is odd} \\ 1 \frac{n}{2} & \text{where n is even} \end{cases}$. Show that f is a

bijection (6marks)

- c) Prove that there is no rational number x such that $x^2 = 2$. (6marks)
- d) Let \mathbb{F} be an ordered field. Define a metric d on the field as $d(x,y) = \sqrt{|x-y|}$ for $x,y\in\mathbb{F}$. Show d is a metric. (4 marks)

QUESTION THREE (20 MARKS)

- a) suppose a relation R in the set of integers is defined as $R = \{(a,b) \mid a-b \text{ is an integer}\}. \text{ Show that it's an equivalence relation}$ (4marks)
- b) Define the following terms
 - i. Complete ordered field (2marks)
 - ii. Supremum (2marks)
 - iii. Infimum (2marks)
 - iv. Limit (2marks)
- c) Find the infimum, supremum, minimum and maximum of the following sets.
 - i. $A = \left(-1, \frac{1}{n}\right), n \in \mathbb{N}$ (4marks)
 - ii. $B = \left[\frac{1}{n}, \frac{2+n}{n}\right], n \in \mathbb{N}$ (4marks)

QUESTION FOUR (20 MARKS)

a) State the completeness axiom

(2marks)

f) Let A, B and C be sets. Show that

i.
$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$

(3marks)

ii.
$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$

(3marks)

b) Let
$$f: \mathbb{R} \to \mathbb{R}$$
 and $g: \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = \frac{3x+2}{7}$ and $g(x) = x^3 - 2x - 3$.
Find $(g \circ f)(-2)$ (5marks)

- c) Differentiate between injective and subjective functions giving examples in each case. (4marks)
- d) If $\mathbb F$ is an ordered field and $a,b,c\in\mathbb F$, show that if $a< b \land b < c$ then a< c (3marks)

QUESTION FIVE (20 MARKS)

a) Define the following terms

i. Bounded set (2marks)
ii. Equivalence relation (3marks)

ii. Equivalence relation (3marks)

a) Prove that a countable union of countable sets is countable (5marks)

b) State the Dedekind axioms (5marks)

c) Show that for $n \ge 1$, $8^n - 3^n$ is divisible by 5 for $n \in \mathbb{N}$. (5marks)