

(Knowledge for Development)

KIBABII UNIVERSITY UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR SECOND YEAR FIRST SEMESTER SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION

SCIENCE

COURSE CODE: MAP 212/MAP 222/MAT 204

COURSE TITLE: REAL ANALYSIS I

DATE: 25/07/2022 **TIME**: 2:00 PM - 4:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE COMPULSORY (30 MARKS)

		,	
	a)	Define the following terms:	
		i. Power set	(2marks)
		ii. Cardinality of sets	(2marks)
		iii. A discontinuity of a function	(2marks)
		iv. A disjoint set	(2marks)
		v. Indexed sets	(2marks)
	b)	Let \mathbb{F} be an ordered field and $a \in \mathbb{F}$, $a \neq 0$ iff $a^2 > 0$	(4marks)
	c)	Show that for $n \ge 1$, $8^n - 3^n$ is divisible by 5 for $n \in \mathbb{N}$.	(5marks)
	d)	Show that an infinite subset of a countable set is countable	(4marks)
	e)	Let $A = \{x: -1 < x < 0\}$ be a subset of the real number field \mathbb{R} .	
		(i). Categorize the set as either closed or open, explain.	(2marks)
		(ii). What is the interior of A?	(1mark)
		(iii). Determine the closure, \overline{A} , of A. Explain your answer.	(2marks)
		(iv). Is A bounded? Explain	(2marks)
QUESTION TWO (20 MARKS)			
	a)	State the completeness axiom.	(2marks)
	b)	What do you understand by the term a countable set?	(1mark)
	c)	Prove that the set of integers are countable.	(6marks)
	d)	Define a relation, $x \sim y$, between x and y as $x \equiv y \mod(n)$, $n \in \mathbb{N}$ mean	ning that x —
		y is divisible by n. Show that $x \sim y$ is an equivalence relation.	(6marks)
	e)	Let A and B be two finite sets. Show that $(A \cap B)^c = A^c \cup B^c$	(5marks)
QUESTION THREE (20 MARKS)			
	a)	Given that x and y are two positive real numbers, prove that $x < y$ if and onl	
		$x^2 < y^2$	(5marks)
	b)	Define the following terms	
		i. Complete ordered field	(2marks)
		ii. Supremum	(2marks)
		iii. Complete ordered field	(2marks)
		iv. Infimum	(2marks)
	c)	For every real number $x \neq 0$ prove that $x^2 > 0$.	(4marks)
	d)	Given that $X = \{4,5\}$ and $Y = \{-1,0,2\}$, find the Cartesian product of	X and Y
			(3marks)

QUESTION FOUR (20 MARKS)

- a) Let $n \in \mathbb{N}$. Let \sim be a relation on \mathbb{N} be defined as $x \sim y$ if $x \equiv y \mod(n)$, that is $x y = x \pmod{n}$ (10marks) y is divisible by n. Show that \sim is an equivalence relation.
- b) Let A, B and C be sets. Show that

(5marks) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$

(5marks) $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

QUESTION FIVE (20 MARKS)

(5marks) a) Using the first principle of mathematical induction, show that

 $1 + 2 + 3 + 4 + \dots + n = \frac{n(n + 1)}{2}$, $n \in \mathbb{N}$.

b) Define a closed set, hence, show that arbitrary intersection of closed sets is closed.

(6marks)

(3marks) c) Define a metric space

(4marks) d) Show that $|a| + |b| \ge |a + b|$

(2marks) e) Define the term Cartesian product of sets X and Y.