

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2021/2022 ACADEMIC YEAR
FOURTH YEAR FIRST SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE

COURSE CODE:

MAA 411/MAP 412.

COURSE TITLE:

COMPLEX ANALYSIS II

DATE:

27/05/2022

TIME: 9:00 AM - 11:00 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (30 MKS)

- (i) Define a power series (2 mks)
- (ii) Suppose a power series $\sum a_n Z^n$ converges for $z=z_o\neq 0$. Prove that it converges ;
- (a) absolutely for $|z| < |z_o|$ (5 mks)
- (b) Uniformly for $|z| \le |z_1|$ where $|z_1| < |z_o|$ (5 mks)
- (iii) Prove that both the power series $\sum_{n=0}^{\infty} a_n Z^n$ and the corresponding series of derivatives $\sum_{n=0}^{\infty} n a_n Z^{n-1}$ have the same radius of convergence. (10 mks)
- (iv) Find the Laurent series about the indicated singularity for each of the following functions.

(a)
$$\frac{e^{2z}}{(z-1)^3}$$
; $z = 1$ (2 mks)

(b)(z-3)
$$\sin \frac{1}{z+2}$$
; $z = -2$ (2 mks)

(c)
$$\frac{z-\sin z}{z^3}$$
; $z = 0$ (2 mks)

(d)
$$\frac{z}{(z+1)(z+2)}$$
; $z = -2$ (2 mks)

QUESTION TWO (20 MKS)

- (a) Define the following terms:
- (i) Singular function (2 mks)
- (ii) Harmonic function (2 mks)
- (b) Find the residue of:

(i)
$$f(z) = \frac{z^2 - 2z}{(z+1)^2(z^2+4)}$$
 (6 mks)

- (ii) $f(z) = e^z csc^2 z$ at all poles in the finite plane (5mks) .
- (c) Show that $\int_0^{2\pi} \frac{\cos 3\theta}{5-4\cos \theta} d\theta = \frac{\pi}{R}$. (5 mks)

QUESTION THREE (20 MKS)

(a). Evaluate the following (10 mks)

 $\frac{1}{2\pi i}\oint_C\frac{e^{zt}}{z^2(z^2+2z+2)}dz$; around the circle C with equation |z|=3

- (b) Define the following terms:
- (i) Laurent series (3 mks)
- (ii) Principal part (2 mks)
- (iii) Analytic part (2 mks)
- (iv) Pole of order N (3 mks).

QUESTION FOUR (20 MKS)

- (a) Determine by illustration , the region of the W plane into which each of the following is mapped by the transformation $W = Z^2$.
- (i) First quadrant of the Z plane .(6 mks)
- (ii) Region bounded by x=1,y=1 and x+y=1. (7 mks)
- (b) Find the residue of $f(z) = \frac{e^z}{(z^2+1)z^2}$ (7 mks) .

QUESTION FIVE (20 MKS)

- (a) Prove that $\frac{\partial(u,v)}{\partial(x,y)}$. $\frac{\partial(x,y)}{\partial(u,v)}=1$. (15 mks)
- (b) Find the residue of $f(z)=\frac{4-3z}{z^2-z}$ (5 mks)