

(Knowledge for Development)

KIBABII UNIVERSITY

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2021/2022 ACADEMIC YEAR
FIRST YEAR FIRST SEMESTER
MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE MATHEMATICS

COURSE CODE:

MAP 111

COURSE TITLE:

FOUNDATION MATHEMATICS I

DATE: 04/02/2022

TIME: 9:00 AM - 11:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE COMPULSORY (30 MARKS)

a) Define the following

i.	Set	(2marks)

ii. Power set (2marks)

iii. Disjoint sets (2marks)

iv. Cartesian product of sets (2marks)

v. Subset (2marks)

- a) In a survey of 500 students of a college, it was found that 49% liked watching football, 53% liked watching hockey and 62% liked watching basketball. Also, 27% liked watching football and hockey both, 29% liked watching basketball and hockey both and 28% liked watching football and basketball both. 5% liked watching none of these games.
 - i. How many students like watching all the three games? (2marks)
 - ii. Find the ratio of number of students who like watching only football to those who like watching only hockey. (3marks)
 - iii. Find the number of students who like watching only one of the three given games.
 (2marks)
 - iv. Find the number of students who like watching at least two of the given games. (3marks)
- b) If x is congruent to 13 modulo 17 then 7x 3 is congruent to which number modulo 17?

 (4marks)
- b) Convert (4182.75)₁₀ to

i. Binary (2marks)

ii. Octal (2marks)

iii. Hexadecimal (2marks)

QUESTION TWO (20 MARKS)

a) Solve the equation $13x + 16 \equiv -1 \mod 31$ (7marks)

b) Determine the truth tables of the following proposition (5marks)

i. $(A \Rightarrow B) \Leftrightarrow (A \lor \sim B)$

c) In a group of 6 boys and 4 girls, four children are to be selected. In how many different ways can they be selected such that at least one boy should be there? (5marks)

c) Show that $1 + Sin 2\theta = (Sin \theta + Cos \theta)^2$ (3marks)

QUESTION THREE (20 MARKS)

a) Solve
$$z^3 = i$$
 (6marks)

- b) Solve $\cos^2(\alpha) + \cos(\alpha) = \sin^2(\alpha)$ on the interval $0^\circ \le x < 360^\circ$ (5marks)
- c) Convert the following numbers into decimals

i.
$$(101.01)_2$$
 (2marks)

d) Consider a function $f:(1,-\infty)\to (0,1)$ defined by $f(x)=\frac{x-1}{x+1}$. Find the inverse of f(x) (4marks)

QUESTION FOUR (20 MARKS)

- a) A zip code contains 5 digits. How many different zip codes can be made with the digits 0–9 if no digit is used more than once and the first digit is not 0? (5marks)
- b) Define;
 - i. a one-to-one function (2marks)
 - ii. an on to function (2marks)
- c) State the domain and range of $y = \sqrt{x+4}$ (4marks)
- d) Find the value of x and the value of y in the following equation

$$(x+iy)(3+4i) = 3-4i$$
 (4marks)

d) Simplify $(1-i)^3$ (3marks)

QUESTION FIVE (20 MARKS)

- a) A given company has 1500 employees. Of those employees, 800 are computer science majors. 25% of those computer science majors are also mathematics majors. That group of computer science/math dual majors makes up one third of the total mathematics majors. How many employees have majors other than computer science and mathematics? (5marks)
- b) Let $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x + 3 and $g: \mathbb{R} \to \mathbb{R}$ by $g(x) = -x^2 + 1$. Find

- c) How many different committee members can be selected from eight men and 10 women if a committee is composed of three men or three women? (4marks)
- d) Convert the (1032.6875)₁₀ to octal number system (5marks)