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Abstract 

Heat flows in the direction of decreasing temperature, that is, from hot to cool. In this paper we 

derive the heat equation and consider the flow of heat along a metal rod. The rod allows us to 

consider the temperature, u(x,t), as one dimensional in x but changing in time, t.  
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1  Introduction 

The heat equation is an important partial differential equation (PDE) which describes the 

distribution of heat (or variation in temperature) in a given region over time. Heat is a process of 

energy transfer as a result of temperature difference between the two points. Thus, the term ‘heat’ 

is used to describe the energy transferred through the heating process. Temperature, on the other 

hand, is a physical property of matter that describes the hotness or coldness of an object or 

environment. Therefore, no heat would be exchanged between bodies of the same temperature, 

Christopher Yaluma  [6]. In an object, heat will flow in the direction of decreasing temperature. 

The heat flow is proportional to the temperature gradient, that is;   

                                  
x
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where k is a constant of proportionality. Consider a small element of the rod between the 

positions x and x+δx. The amount of heat in the element, at time t, is  

 H(t)=σϱ u(x,t)δx, 

where σ is the specific heat of the rod and ϱ  is the mass per unit length. At time t+δt, the amount 

of heat is  

 H(t+δt)=σϱ u(x,t+δt)δx 

Thus, the change in heat is simply  

 x  t))u(x,-t)  t (u(x,   H(t)- t) H(t    

This change of heat must equal the heat flowing in at x minus the heat flowing  

out at x+δx during the time interval δt. This may be expressed as  
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Equating these expressions and dividing by δx and δt gives,  
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Taking the limits of δx and δt tending to zero, we obtain the partial derivatives, John Fritz et 

al [3]. Hence, the heat equation in 1-D is  
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where c
2
=k/σϱ  is the constant thermal conductivity and ∂

2
u/∂x

2
 is the thermal conduction. 

This is in the form, Evans et al [2];  

 xxt ucu 2                                           (1) 

The heat equation has the same form as the equation describing diffusion, Thambynayagam  [4]. 

 

By separation of variables; 

Let  

 U=XT, X=X(x), T=T(t)   (2) 

Equation (1) now becomes;  

 XT
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Separating the variables;  
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Thus;  
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(ii) For k > 0, say k=ϱ 2
, X

''
−ϱ 2

X=0 and 
T
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(iii) For k < 0, say k=−ϱ 2
,X

''
+ϱ 2

X=0⇒r=±iϱ   

 ⇒ 
T

'

T
=−c

2ϱ 2⇒lnT=−c
2ϱ 2
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 ⇒T=e
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3
e
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 ⇒U=XT=(C
1
cosϱ x+C

2
sinϱ x)C

3
e
−c2ϱ 2t

 

⇒U(x,t)=(Acosϱ x+Bsinϱ x)e
−c2ϱ 2t

   (9) 

This is consistent with the physical nature of the periodic equation. 

2  Heat flow in a metal rod 

We consider a metal rod with boundary conditions (BC), Carslaw et al [1]  

 x=0; U(0,t)=0; x=l; U(l,t)=0;∀t 

With Initial conditions (IC);  

 t=0;U(x,0)=u
0

 

With  

 x=0;U(0,t)=Ae
−c2ϱ 2t

=0,⇒A=0  

 ⇒U(x,t)=Bsinϱ xe
−c2ϱ 2t

 

With  

 x=l,U(l,t)=Bsinϱ le
−c2ϱ 2t

=0  

 ⇒sinϱ l=0⇒ϱ l=nπ⇒ϱ = 
nπ

l
 

 

Thus  
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This can be generalized as  
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 U
n
(x,t)=b

n
sin 

nπx

l
e
−c2( 

nπ

l
)2t

 

with  

 b
n
=B

n
 

Thus the general solution is  

 U(x,t)= 
n=1

∞
 b

n
sin 

nπx

l
e
−c2( 

nπ

l
)2t

   (10) 

From the Initial condition, we have  

 U(x,0)= 
n=1

∞
 b

n
sin 

nπx

l
=u

0
 

So that  

 u
0
= 

n=1

∞
 b

n
sin 

nπx

l
   (11) 

This is just the half range sine series, Weisstein et al [] where;  

 b
n
= 

2

l
 

0

1

 f(x)sin 
nπx

l
 dx   (12) 

for all positive integers, n  

 

3  Conclusion 

It is worth noting that because every term in the solution for U(x,t) has a negativeexponential in 

it, the temperature must decrease in time and the final solution willtend to U=0. This is different 

from the wave equation where the oscillations simply continued for all time. This trivial solution, 

U=0, is a consequence of the particular boundary conditions chosen here.  
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