

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF B.ED (SCIENCE) AND BSC (PHYSICS)

COURSE CODE: SPC 211

COURSE TITLE: ELECTRICITY AND MAGNETISM

DURATION: 2 HOURS

DATE: 03/02/2022

TIME: 8-10AM

INSTRUCTIONS TO CANDIDATES

Answer QUESTION ONE (Compulsory) and any other two (2) Questions.

- Indicate **answered questions** on the front cover of the answer booklet.

Yours answers to each of the three questions starts on a new page and make sure your work is correctly numbered.

This paper consists of 3 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

Question One

- a) State the law of charges and the law of currents. (2 marks)
- b) Differentiate between transient current and steady current. (2 marks)
- c) State the Coulomb's law. (2 marks)
- d) Estimate the force due an electron at a distance of 50pm from the proton (electron charge is -1.6x10⁻¹⁹C, proton charge is +1.6x10⁻¹⁹C while the permittivity of free space is 1.257x10⁻⁷).
 e) Define an Ohm (1 mark)
- e) Define an Ohm.
 f) A metal rod of length *l*, cross-sectional area *A*, and electrical conductivity σ is clamped between two points that have a potential difference of *V* between them. Derive the Ohm's law.
- between them. Derive the Ohm's law. (4 marks)
 g) Define capacitance. (2 marks)
- h) We have a capacitor whose plates are each of area A, separation d, and the medium between the plates has permittivity ε . It is connected to a battery of EMF V, so the potential difference across the plates is V. Show that $C = \varepsilon \frac{A}{d}$. (3 marks)
- f) State the Kirchhoff's rules. (2 mark)
- g) The circuit in Figure 1 shows a network of resistors connected to a 24 V battery with negligible internal resistance.

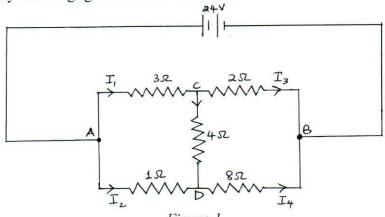


Figure 1

Form all the equations that are required to evaluate the currents I_1 , I_2 , I_3 , I_4 and I_5 .

h) Define an electric dipole. State the assumption made for an ideal electric dipole. (2 marks)

(4 marks)

i) Three equal charges each of magnitude Q are placed at the corners of a square of side x. Find the resultant electric field at the fourth corner where there is no charge.
 i) Define the intensity B of a magnetic field.
 (2 marks)
 (1 mark)

j) Define the intensity B of a magnetic field.

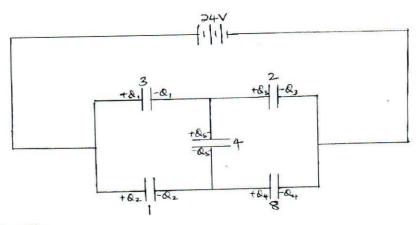
Question Two

A plane circular sheet of radius b has a charge distributed uniformly over its surface with a density of σ per unit area. A charge Q is situated perpendicularly at a distance, a, from the centre of the sheet;

- (10 marks) Find the force on the charge. i)
- (4 marks) What would the force become as $b \to 0$ and $b \to \infty$? ii)
- Four equal charges each of magnitude 2 Coulombs are placed at the four corners of a square of side 1cm. Find the resultant force on any of the (6 marks) charges.

Question Three

- Find the components of \vec{E} given that $\vec{E} = 2xy$ and $\vec{E} = r^2 \cos \theta$ (8 marks)
- A plane circular sheet has a circular hole of radius b at its centre and has a charge distributed uniformly over its surface with a density of σ per unit area. A charge Q is situated perpendicularly at a distance, a, from the centre of the sheet. Find the electric field on the charge.


(12 marks)

Ouestion Four

Starting with two spheres are of inner and outer radii a and b, with a potential difference V between them, with charges +Q and -Q on the inner and outer spheres respectively, show that the capacitance of an isolated sphere of radius a is given by $C = 4\pi\varepsilon a$.

(10 marks) (10 marks)

b) Calculate the charge held in each capacitor.

Question Five

State the Biot Savart law.

(2 marks)

- Derive the equations of magnetic field b)
 - near a long, straight, current-carrying conductor i)

(4 marks) (8 marks)

- on the axis and in the plane of a plane circular current-carrying ii)
- on the axis of a long solenoid. iii)

(6 marks)