

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE (BIOLOGY)

COURSE CODE: SBT 211*

COURSE TITLE:

BIOPHYSICS

DATE: 19TH DECEMBER 2022

TIME: 2.00 - 4.00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question one (1) and any other two (2) Questions. Question one is compulsory and carries 30 marks, the other Questions carry 20 marks each.

TIME: 2 Hours

This paper consists of 3 printed pages. Please Turn Over KIBU observes ZERO tolerance to examination cheating

Question One

a) Explain the functional difference in the following biophysical devices.

(5 Marks)

- i. Optical tweezers
- ii. Voltage clamp
- iii. Calorimeter
- b) List any FIVE applications of Nuclear Magnetic Resonance Spectroscopy in biophysics and medicine. (5 Marks)
- c) Highlight the concepts of Free energy using relevant examples.

(5 Marks)

d) Describe the Chemical Potential, stating the mathematical expression: (5 Marks)

e) The figure below illustrates an electrocardiogram illustrating a cardiac function. (5 Marks)

What do the following electrocardiogram cycles of signals corresponds to in in a cardiac function: P, Q, S-T, T and T-P

- f) A molecule of a gas is flowing through a 15 m (δr) long circular pipe of radius 40cm. The concentrations of the gas at the ends of the pipe are 50 kg/m³ and 10 kg/m³. The diffusion constant (D) for the gas at $40 \, {}^{0}\text{C}$ is $2.6 \times 10^{-5} \, \text{m}^{2}/\text{s}$.
 - a) Calculate the diffusion flow rate ($\pi = 3.14$) (3 Marks)
 - b) Calculate the concentration gradient (2 Marks)

Question Two

- a) Describe in details, the chemical structure of nucleic acids. (10 Marks)
- b) Describe the main steps in specimen preparation for electron microscopy (10 Marks)

Question Three

a) Give a detailed description of Signal transduction in the cell

(10 Marks)

- b) A spherical human haemoglobin molecule has radius of 1.2×10^{-10} .m. Use the Stokes's Law to determine the frictional coefficient in kg/s assuming that its viscosity (η) in water at room temperature (298K) is 9×10^{-4} kg/ (ms). ($\pi = 3.14$) (4 Marks)
- c) Differentiate between UV Spectroscopy and Fluorescence Spectroscopy stating the use in each case. (6 Marks)

Question Four

- a) How can the X-Ray crystallography be applied to determine the atomic level structure of proteins: (10 Marks)
- b) Describe how proteins can be made into crystals for analysis using X-Ray crystallography technique. (10 Marks)

Question Five

- a) Explain the basic principles of electrophoresis using mathematical expressions where necessary . (5 Marks)
- b) Describe in details, the following electrophoresis types. (15 Marks)
 - i. Moving boundary electrophoresis.
 - ii. Continuous flow electrophoresis.
 - iii. Gel Electrophoresis