

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS **2022/2023 ACADEMIC YEAR**

THIRD YEAR FIRST SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE:

SCH 312*/313

COURSE TITLE: ORGANIC SYNTHESIS

DURATION: 2 HOURS

DATE: 19/12/2022

TIME: 2:00-4:00PM

INSTRUCTIONS TO CANDIDATES

- Answer QUESTION ONE (Compulsory) and any other two (2) Questions.
- Indicate answered questions on the front cover.
- Start every question on a new page and make sure question's number is written on each page.

This paper consists of 4 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

Question 1 (30 marks)

a) Distinguish between Synthesis and retrosynthesis

[2 marks]

b) Indicate all the acidic hydrogens

[4 Marks]

c) Provide possible synthetic equivalents for the following synthons

[4 marks]

- i. CH₂CH₂OH ii. RCH₂CH₂ iii. RCH₂O iv. RC=O
- d) Show a reasonable disconnection for

[4 marks]

i. 3-pentanol

i.

- ii. 2-ethyl-3-methylbutanenitrile.
- e) Give two protecting groups for alcohols

[2 marks]

f) Explain briefly why protecting groups are essential in organic synthesis.

[2 marks]

g) Give reagents that would be used to give the following compounds using Diels-alder reaction. [4 marks]

$$\operatorname{CH}_3$$
 CN $\operatorname{ii.}$

h) I) What do you understand by the term 'mixed aldol condensation'

[2 marks]

II) Using curly arrows, provide a plausible reaction mechanism for the reaction below.

i) State two applications of organic synthesis to pharmaceutical chemists.

[2 marks]

Question 2 (20 marks)

i.

- a) Outline the steps involved when you want to disconnect a target molecule (**TM**) so as to plan for its synthesis.

 [4 marks]
- b) You are supposed to synthesize compound shown below (TM) starting with a diester using Dieckmann condensation reaction as first step of synthesis and Grignard reagent.

Carry out retrosynthesis of compound. ii).

[3 marks]

- Write its synthesis giving specific reagents and conditions. [6 marks] Propose a reaction mechanism involved in the above synthesis. iii).

Question 3 (20 marks)

- a) What is meant by term 'ylide'
- b) Starting with chloroethane as a precursor, explain how the phosphorous ylide is formed to initiate a Wittig reaction. Illustrate your answer with appropriate chemical equations. [4
- c) Complete the following reactions by giving the structures of the products.

[4 marks]

$$CH_3CH_2CHO + (Ph)_3P = CH_2$$

$$+ (Ph)_3P = CHCH_3$$

d) By carrying retrosynthesis of the TM given below, propose one possible method of synthesizing the following compound (TM) using the starting material containing no more than seven carbons and triphenyl phosphine. [4marks]

e) Provide mechanism for proposed method in d) above

[3marks]

f) State two Advantages of Wittig reaction over other methods

[4mks]

Question 4 (20 marks)

iii.

a. Complete and provide mechanism for each of the following reactions:

i.
$$CH_2 = CH_2 + HBr$$

[4 marks]

[4 marks]

[4 marks]

b. Using the following compounds,

i. Indicate the dienophile and the diene

[2 Marks]

ii. Show the mechanism and explain the stereochemistry of the product when they undergo Diel_Alders reaction [6marks]

Question 5 (20 marks)

a) Give the reagents and conditions for the following transformations

[4 marks]

b) Provide the products formed in the reactions shown below.

[6 marks]

i).
$$\frac{O}{H} = \frac{1. \text{ CH}_3 \text{CH}_2 - \text{MgBr}}{2. \text{ H}_3 \text{O}^+}$$

ii).
$$\begin{array}{c} O \\ C \\ \end{array}$$

iii).
$$\frac{0}{2. \text{ H}_3\text{O}^+}$$

c) The following compound (TM) was synthesized using Grignard reagents and other organine reagents

- i) Carry out its retrosynthesis showing clearly the synthons and synthetic equivalents [4marks]
- ii) Write its synthesis and provide the mechanism.

[6marks]