

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF B.ED (SCIENCE) AND BSC (PHYSICS)

COURSE CODE:

SPH 316/SPC 314

COURSE TITLE:

ATOMIC PHYSICS

DATE: 19/12/2022

TIME: 9:00-11:00AM

INSTRUCTIONS TO CANDIDATES

TIME: 2 HOURS

Answer question ONE and any TWO of the remaining

KIBU observes ZERO tolerance to examination cheating

QUESTION ONE [30 MARKS]

QUESTION ONE [30 MARKS]		
a)	Define the following terms:	
	Auger effect, Anomalous Zeeman effect, Lande's interval rule and Lamb shift	[4 marks
b)	Calculate the spin-orbit interaction splitting of a level corresponding to $n = 2$,	[3 marks
	l = 1 of the hydrogen atom.	
c)	Show that the average speed of an electron in the first Bohr orbit of an atom of	[3 marks
	atomic number Z is given by $Z/137$.	
d)	Calculate the spin-orbit splitting of hydrogen 2p state.	[3 marks
e)	Couple a p-state and an s-state electron via Russell-Saunders coupling.	[3 marks
f)	What is Lande's g-factor? Find the Lande's g-factor of the state ² P _{3/2} .	[4 marks
g)	State Moseley's law and hence find the wavelength of the K_{α} line in Aluminum. $[Z = 13 \text{ and } R = 1.097 \times 10^7 m^{-1}]$	[4 marks
h)	Calculate the normal Zeeman splitting of the line 6438Å in a magnetic field of $0.5T$. [$e = 1.602x10^{-19}C$, $m_e = 9.11x10^{-31}kg$ and $c = 3.0x10^8 m/s$]	[3 marks
i)	Find the angle between l and s in $^2P_{3/2}$ state of one electron atom.	[3 marks
QUESTION TWO [20 MARKS]		

- a) Explain how any two of the following experiments led to the development of [10 marks atomic physics:
 - (i) Stern-Gerlach experiment
 - (ii) Franck-Hertz experiment
 - (iii) Lamb-Rutherford experiment
- b) In the Stern-Gerlach experiment:-
 - (i) Obtain the expression of the force acting on the atomic magnetic moment. Why must the magnetic field be inhomogeneous? And how is the inhomogeneous field obtained?
 - (ii) For hydrogen atom, what determines the number of lines one sees? What features of the apparatus determine the magnitude of the separation between the lines?

QUESTION THREE [20 MARKS]

- a) Calculate for He+:-
- i) Radius of the first Bohr orbit
- ii) Velocity of the electron moving in the first orbit.
- iii) Orbital frequency in the first orbit

[5 marks

[5 marks

. .

[3 marks

[3 mark

[3 mark

- iv) Wavelength of the resonance line emitted in the transition $n=2 \rightarrow n=1$. [3 marks] $[a_0=0.529 \text{Å}, Z=2, \varepsilon_0=8.85 \times 10^{-12} F/m, e=1.602 \times 10^{-19} C, m_e=9.11 \times 10^{-31} kg, ~R_{\infty}=1.097 \times 10^{7} m^{-1}, ~h=1.055 \times 10^{-34} Js]$
- b) Give main conclusions on the present day atomic model. [8 marks]

QUESTION FOUR [20 MARKS]

- a) Sodium chloride forms cubic crystals with four sodium and four chloride atoms [6 marks] per cube. Calculate the longest wavelength for which X-rays can be Bragg reflected given that the atomic weights of Na and Cl are 23.0 and 35.5 respectively and the density of NaCl is 2.16g/cc. [$N_A = 6.02x10^{23}$]
- b) For X-rays of wavelength 4Å, determine the number of Bragg reflections and the angle of each. [6 marks]
- c) Derive an approximate formula for λ as a function of Z for the K X- ray lines and show that the Moseley plot $(\lambda^{-1/2} \text{vs } Z)$ is linearly a straight line. [8 marks]

QUESTION FIVE [20 MARKS]

- a) Find the values of S, L and J in the following states 1_{S_0} , 3_{P_2} , $2_{D_{3/2}}$ and $6_{H_{5/2}}$. [12 marks]
- b) Obtain an expression for the doublet separation caused by the spin-orbit interaction in alkali atoms. Interpret the results obtained. [8 marks]