

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2022/2023 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER

MAIN EXAMINATION

FOR THE DEGREE BACHELOR OF SCIENCE

COURSE CODE: MAA 211/MAT 203

COURSE TITLE: VECTOR ANALYSIS

DATE: 19/12/2022 **TIME**: 9:00 AM - 11:00 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE COMPULSORY (30 MARKS)

- a) Given $\vec{A} = 4i 2j + 2k$ and $\vec{B} = 2i 3j k$, find $\vec{A} \cdot (\vec{A} \times \vec{B})$ (3 marks)
- b) Prove the associative law for vector addition. (4 marks)
- c) If $\vec{U} = 4\mathbf{i} 3\mathbf{j} + 2\mathbf{k}$ and $\vec{V} = \mathbf{i} 2\mathbf{j} + 4\mathbf{k}$, find i. $\vec{U} \times \vec{V}$ ii. $(\vec{V} - \vec{U}) \times (\vec{V} + \vec{U})$ (6 marks)
- d) Find the magnitude of moment of force $\vec{F} = 3i + k$ about the point (1, -3, 3) whose line of action passes through the origin. Sketch it. (5 marks)
- e) If $\vec{A} = A_1 \mathbf{i} + A_2 \mathbf{j} + A_3 \mathbf{k}$ and $\vec{B} = B_1 \mathbf{i} + B_2 \mathbf{j} + B_3 \mathbf{k}$, prove that

$$\mathbf{A} \times \mathbf{B} = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \end{bmatrix}. \tag{4 marks}$$

- f) If $\vec{R} = (5x^2 + y^2)i + 3xyj + (x^2y 2z^2)k$, find
 - i. Divergence of \vec{R}
 - ii. Curl of \vec{R} (4 marks)
- g) Given $\vec{V} = (3x^3y x^3)\mathbf{i} + (e^{xy} y\cos 3x)\mathbf{j} + \sin y \mathbf{k}$, determine
 - i. $\frac{\partial \vec{v}}{\partial x}$ at (0,1)
 - ii. $\frac{\partial \vec{v}}{\partial y}$ at (1,0) (4 marks)

QUESTION TWO (20 MARKS)

- a) Determine a unit vector perpendicular to the plane that contains $\vec{A} = 2i 6j 3k$ and $\vec{B} = 4i + 3j k$ (3 marks)
- b) Find the area of a parallelogram whose adjacent sides are given by the vectors $\vec{A} = 2i j + k$ and $\vec{B} = 3i + 4j k$ (3 marks)
- c) Show that div curl $\vec{A} = 0$ where \vec{A} is a vector field which has continuous second partial derivatives. (4 marks)
- d) Find the volume of the parallelopiped whose adjacent edges are $\vec{a} = i + 2j + 5k$, $\vec{b} = 4i + 6j + 2k$ and $\vec{c} = 2i + 3j 6k$. (4 marks)
- e) A particle moves along the curve $x = t^2 4t$, $y = 2t^2$, z = 3t 5, where t is time. Find the components of its velocity and acceleration at time t = 1 in the direction of i 3j + 2k (6 marks)

QUESTION THREE (20 MARKS)

- a) Define the terms
 - i. divergence of a vector field
 - ii. grad of a scalar field

(4 marks)

- b) Find the work done in moving an object along a straight line from (2, -1, -4) to (3, 2, -1) in a force field given by $\vec{F} = 4i 3j + 2k$ (3 marks)
- c) Find the value of m for which $\vec{a} = m\mathbf{i} 2\mathbf{j} + \mathbf{k}$ and $\vec{b} = 2m\mathbf{i} + m\mathbf{j} 4\mathbf{k}$ are perpendicular. (2 marks)
- d) Find the directional derivative of $\emptyset = x^2yz + 4xz$ at (1, -2, -1) in the direction of 2i j 2k. (4 marks)
- e) Given $\vec{F} = x^2 y \mathbf{i} 2xz \mathbf{j} + 2yz \mathbf{k}$, find curl \vec{F} (3 marks)
- f) If $\emptyset = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ find gradient of \emptyset . (4 marks)

QUESTION FOUR (20 MARKS)

- a) Differentiate between irrational vector and solenoidal vector. (2 marks)
- b) Determine the constant β so that $\vec{V} = (x+3y)\mathbf{i} + (y-2z)\mathbf{j} + (x-\beta z)\mathbf{k}$ is a solenoidal vector field. (2 marks)
- c) If \vec{A} and \vec{B} are differentiable vector functions of a scalar t, show that

$$\frac{d(\vec{A}\cdot\vec{B})}{dt} = \vec{A}\cdot\frac{d(\vec{B})}{dt} + \frac{d(\vec{A})}{dt}\cdot\vec{B}$$
 (3 marks)

- d) Given the force field, $\vec{F} = (x + 2y + 4z)i + (2x 3y z)j + (4x y + 2z)k$
 - i. Show that \vec{F} is a conservative force field (3 marks)
 - ii. Find the scalar potential (5 marks)
- e) Find the area of a triangle with vertices at A(4,2,-1), B(2,3,5) and C(3,6,4). (5 marks)

QUESTION FIVE (20 MARKS)

- a) State without proving the Green's Theorem in the plane. (3 marks)
- b) If $\vec{R}(t) = (t t^2)i + 2t^3j 3k$. Find, $\int_1^2 \vec{R}(t) dt$ (4 marks)
- c) Verify the Green's Theorem in the plane for $\oint_C (xy + y^2)dx + x^2 dy$ where C is the closed curve of the region bounded by y = x and $y = x^2$ (7 marks)
- d) Given $\vec{A} = 2z\mathbf{i} x\mathbf{j} + y\mathbf{k}$, evaluate $\iiint_{v} \vec{A} dV$ where V denote the region bounded by the surfaces x = 0, y = 0, x = 2, y = 6, $z = x^2$, z = 4 (6 marks)