

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER

SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF INFORMATION

TECHNOLOGY

COURSE CODE: MAT 121

COURSE TITLE: LINEAR ALGEBRA I

DATE: 25/07/2022 **TIME**: 8:00 AM - 10:00 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE COMPULSORY (30 MARKS)

a) Let
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 3 & 0 \\ 1 & 1 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 3 \\ 2 & 0 \\ 1 & -2 \end{bmatrix}$ and $C = \begin{bmatrix} 2 & -1 \\ 1 & 1 \\ 0 & 3 \end{bmatrix}$

i. Find A^{-1}

(3marks)

ii. Find a matrix X such that AX + B = C.

(4marks)

iii. Is it possible to find a matrix Y such that YA + B = C? Explain.

(4marks)

b) Let $A = \begin{bmatrix} 7 & 3 \\ -2 & -5 \end{bmatrix}$ and $X = \begin{bmatrix} -4 \\ 3 \end{bmatrix}$. Compute, if possible, $X^T A^T$, $A^T X^T$, $X^T X$, and $X X^T$

(10marks)

c) Let
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & -1 \\ 2 & 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$. Find C if $AC = B^T$. (5marks)

d) Find a vector X, of length 6, in the opposite direction of Y = (1, 2, -2).

(4marks)

QUESTION TWO (20 MARKS)

a) Solve the system

(6marks)

$$x + y + z = 0$$

 $x + 2y + 3z = 0$
 $x + 3y + 4z = 0$
 $x + 4y + 5z = 0$.

b) Show that if $A^{-1} = A^T$, then |A| = 1 or |A| = -1

(3marks)

- c) If A and B are 2 × 2 matrices with det (A) = 2 and det (B) = 5, compute $|3A^2(AB^{-1})^T|$ (5marks)
- d) Let $x, y \in \mathbb{R}^n$ such that ||x|| = 2 and ||y|| = 3 and the angle between them is $\frac{\Pi}{3}$. Evaluate ||x - y||

(6marks)

QUESTION THREE (20 MARKS)

a) Find the reduced row echelon form (r.r.e.f.) of the following matrix: (5marks)

 $\begin{bmatrix} 2 & 4 & 6 & 0 \\ 1 & 2 & 4 & 0 \\ 1 & 3 & 3 & 1 \end{bmatrix}$

b) Let A be a non-singular 4×4 matrix with $|A^{-1}| = 3$. Find

i. |adj(A)|

(4marks)

ii. $\left|\frac{1}{2}A^TAdj(A^{-1})\right|$ (6marks)

c) Find all vectors in \mathbb{R}^4 which are perpendicular to the vectors X = (1, 1, 2, 2) and Y = (2, 3, 5, 5). (5marks)

QUESTION FOUR (20 MARKS)

- a) Let \mathbf{u} and \mathbf{v} be two solutions of the non-homogenous system $A\mathbf{x} = B$. Show that $\mathbf{u} \mathbf{v}$ is a solution to the homogenous system $A\mathbf{x} = O$. (4marks)
- b) Verify that the triangle with vertices A(1, 1, 2), B(1, 2, 3), and C(3, 0, 3) is a right (5marks)
- c) Solve the following linear system using Gauss-Jordan method x + 3y z + w = 1 (6marks)

x + 3y - z + w = 1 2x - y - 2z + 2w = 23x + y - z + w = 1

3x + y - z + w = 1d) Show that if **x** and **y** are in \mathbb{R}^n , then $||x + y|| \le ||x|| + ||y||$ (5marks)

QUESTION FIVE (20 MARKS)

- a) Let \mathbf{u} and \mathbf{v} be two solutions of the homogenous system $A\mathbf{x} = O$. Show that $r\mathbf{u} + s\mathbf{v}$ (for $r, s \in \mathbb{R}$) is a solution to the same system. (4marks)
- b) Show that $U \cdot (V + W) = U \cdot V + U \cdot W$, for any vectors $U, V, W \in \mathbb{R}^n$. (4marks)
- c) Let A be a square matrix. Show that if $A = 2A^T$, then A = 0. (4marks)
- d) Find all values of a for which $X = (a^2 a, -3, -1)$ and Y = (2, a 1, 2a) are orthogonal.

(5marks)

e) Show that if C_1 and C_2 are solutions of the system $A\mathbf{x} = B$, then $4C_1 - 3C_2$ is also a solution of this system. (3marks)