

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS **2020/2022 ACADEMIC YEAR**

SECOND YEAR FIRST SEMESTER SUPPLEMENTARY/SPECIAL EXAMINATIONS

FOR THE DEGREE OF B.Ed. (SCIENCE)

COURSE CODE:

SPH 221

COURSE TITLE:

ELECTRICITY AND MAGNETISM II

DURATION: 2 HOURS

DATE: 29/07/2022

TIME: 2:00PM-4:00PM

INSTRUCTIONS TO CANDIDATES

Answer QUESTION ONE (Compulsory) and any other two (2) Questions.

The following constants might be used: $K_e = 8.99 \times 10^9 \text{ N.m}^2/\text{C}^2$; $M_e = 9.1 \times 10^{-31} \text{ kg}$; $M_p = 1.6 \times 10^{-27} \text{ kg}$; $e = 1.60 \times 10^{-19} \text{ C}$; $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N.M}^2$

KIBU observes ZERO tolerance to examination cheating

<u>Q</u> 1	<u>UESTION ONE [30 Marks]</u> Give an expression relating the magnitude of electric force between two charged particles. [2]	
b)	The electron and proton of hydrogen atom are separated by a distance of approximately 5.3x10 m. Find the magnitude of electric force exerted on the particles. [3])-11
c)	A dust particle with mass m1=4 μ g and charge q1=7 μ C is 3 cm a way from another particle w mass m2=8 μ g and q2=5 μ C. Find the acceleration for each. [4]	
d) e)	Define electric field at a point in space. [2] What is capacitance of a capacitor? [2]	
f) g)	Show that for two capacitors in parallel, the equivalent capacitance is given by $C=C_1+C_2$. [3] Show that for an insulating sphere of radius a with uniform charge density ρ and carries a positive content of the content of the capacitance is given by $C=C_1+C_2$.	
	charge Q, the electric field in region r <a <math="" by="" given="" is="">E = \frac{\rho}{3\varepsilon_0}r [4]	
h)	A parallel plate capacitor has an area of $A=2.0x10^{-4}$ m ² and plate separation=1.0 mm. Find capacitance. [3]	
i)	Show that the work done in charging a capacitor to a charge Q equals the electrical potent	tial
	energy U stored in the capacitor i.e. $U = \frac{Q^2}{2C} = \frac{1}{2}Q\Delta V = \frac{1}{2}C(\Delta V)$	[']) ²
j)	[4] A 5.0 μ F capacitor is charged to a potential of 800V and then discharged through a 25K Ω resist How much energy is delivered to the resistor in time it takes to fully discharge the capacitor? [3]	tor.
OUE	STION TWO [20 Marks]	
a)	The state of the s	<u>1</u>
	[3	
W	A spherical shell with R=5 m has a net charge of $Q=1\mu C$ uniformly distributed over the surfar that is the magnitude of the electric field at (a) a distance r=1m from the <i>center</i> of the sphere and distance d=1 m from the <i>surface</i> of the sphere?	(b) 4]
c)	Show that the capacitance of a parallel plate capacitor is given by $C = \frac{\varepsilon_0 A}{d}$ where ε_0 =permittive	vity
of	Free space; A= area of the plates and d=plate separation. [4]]
d)	Joule's heating in a resistor R is given as $P=i^2R=\frac{\varepsilon^2R}{(R+r)^2}$ where $\varepsilon=e.m.f$ of the cell and r is	the

QUESTION THREE [20 Marks]

3i+4k) x 10-4 T?

a) State the Kirchhoff's laws, as applied in complex circuit analysis

internal resistance. What is the value of R to obtain maximum Joule's heating?

e) What is the force on $0.1\mu C$ charge moving at velocity $\mathbf{v} = (10\mathbf{j} - 20\mathbf{k})$ m/s in a magnetic field $\mathbf{B} = (-10\mathbf{j} - 20\mathbf{k})$

f) Consider a capacitor of capacitance C that is being discharged through a resistor of resistance R.

After how many time constants is the charge on the capacitor one-fourth its initial value?

[3]

[3]

[3]

b) Find the currents I_1 , I_2 and I_3 in the circuit shown in figure 2.

Figure 2

 2Ω

Show that if a capacitor is charged with a battery through a resistor of resistance R, the current on the capacitor vary in time according to the expression $I(t) = \frac{\varepsilon}{R} e^{\frac{-t}{RC}}$. [10]

[8]

QUESTION FOUR [20 Marks]

- a) A proton is moving in a circular orbit of radius 14 cm in a uniform 0.35T magnetic field perpendicular to the velocity of the proton. Find the linear speed of the proton. [3]
- b) Give a mathematical expression of the Biot-Savart law? [2]
- c) Explain the origin of magnetic field that can be determined by the Biot-Savart law. [1]
- d) For a straight, long thin wire carrying a constant current i, determine the magnitude of magnetic field at a point P due to this current. [use figure 3] [8]

e) A proton is released from rest in a uniform electric field that has magnitude of 8.0x10⁴ V/m and is directed along the positive x-axis. The proton undergoes a displacement of 0.50 m in the direction of electric field. Find the change in electric potential and potential energy respectively of the proton for the displacement.

SPH 221: Electricity and Magnetism II

QUESTION FIVE [20 Marks]

- A parallel plate capacitor of capacitance 1 pF has dimensions 5 cm by 10 cm separated by a paper of thickness d millimeters. Find the thickness of this dielectric. (k=2).
- b) What is maximum charge that can be placed on this capacitor? (dielectric strength of paper is $16x10^6 \text{ V/m}$
- c) Find the electric field due to a non-conducting, infinite plane of positive charge with uniform surface charge density σ.
- d) Find an expression for the electric potential at a point p located on the perpendicular central axis of a uniformly charged ring of radius a and total charge Q.

.....END.....