

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR SECOND YEAR

SPECIAL/SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

(MATHEMATICS)

COURSE CODE: MAP 211/MAT 201

COURSE TITLE: LINEAR ALGEBRA I

DATE: 18/07/2022

TIME: 8:00 AM - 10:00 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO (2) Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE

a) Use Gauss- Jordan elimination to solve the following system of equations 4x+8y-12z = 44

$$3x + 6y - 8z = 32$$

$$-2x-y = -7$$

(6 marks)

- b) Let $\mathbf{u} = (1, 2, 3)$, $\mathbf{v} = (2, -3, 1)$ and $\mathbf{w} = (3, 2, -1)$
 - i) Find the components of the vector \mathbf{u} -3 \mathbf{u} +8 \mathbf{w}

(2 marks)

- ii) Find the scalars c_1 , c_2 , c_3 such that $c_1\mathbf{u}+c_2\mathbf{v}+c_3\mathbf{w}=(6, 14, -2)$ (6 marks)
- b) Let $\mathbf{u} = (2,-1, 1)$, $\mathbf{v} = (1, 1, 2)$. Find $\langle \mathbf{u}, \mathbf{v} \rangle$ and the angle between these two vectors. (4 marks)
- c) Show that T: $IR^2 \rightarrow IR^3$ defined by T(x, y) = (x, x+y, x-y) is a linear transformation. (2 marks)
- d) Let $T:IR^3 \rightarrow IR^3$ be denoted by

$$\{1\}$$
 $\{1\}$ $\{0\}$

$$\{0\}$$
 $\{2\}$ $\{0\}$ $\{1\}$

$$T \{0\} = \{1\}, T \{1\} = \{0\}, T \{0\} = \{0\}$$

$$\{0\}$$
 $\{0\}$ $\{0\}$ $\{1\}$ $\{1\}$

- {1} a) Find the matrix representation of T with respect to the standard basis S of IR3 (2 marks)
- 1 using the definition of T and then the matrix obtained in (a) b) Find T 2 3 (8 marks)

QUESTION TWO

- a) Show that $IR^n = span \{e_1, e_2, ----e_n\}$ where e_i is the vector with 1 in the i^{th} component and 0 otherwise. (5 marks)
- b) Show that the vectors $\mathbf{w} = (9,2,7)$ is a linear combination of the vectors $\mathbf{u} =$ (1,2,-1) and $\mathbf{v} = (6,4,2)$ whereas the vector $\mathbf{w}' = (4,-1,8)$ is not. (10 marks)
- c) Show that $\mathbf{a} = (1,0,1,2)$, $\mathbf{b} = (0,1,1,2)$, and $\mathbf{c} = (1,1,1,3)$ are linearly independent. (5 marks)

QUESTION THREE

- a) Given that $\mathbf{u} = (2,-1,3)$ and $\mathbf{w} = (4,-1,2)$, find
 - i) \mathbf{u}_1 , the projection of \mathbf{u} onto \mathbf{w} (5 marks)
 - ii) \mathbf{u}_2 , the perpendicular vector to \mathbf{w} (3 marks)
- b) Given that $\mathbf{u} = (2,-1, 1)$ and $\mathbf{v} = (1, 1,-1)$, show that \mathbf{u} and \mathbf{v} are orthogonal. (2 marks)
- c) If $\mathbf{u} = (1,2,-2)$ and $\mathbf{v} = (3,0,1)$ find the cross product $\mathbf{u} \times \mathbf{v}$ (5 marks)
- d) Let $\mathbf{u} = (1, 2, -2)$ and $\mathbf{v} = (3, 0, 1)$. Show that $\langle \mathbf{u}, \mathbf{u} \times \mathbf{v} \rangle$ and $\langle \mathbf{v}, \mathbf{u} \times \mathbf{v} \rangle = 0$ and hence $\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v} . (5 marks)

QUESTION FOUR

- a) Given a vector $\mathbf{v} = (a, b, c,)$ in IR^3
 - i) Show that $\cos \alpha = a$

 $\|\mathbf{v}\|$ (2 marks)

- ii) Find $\cos \beta$ (2 marks)
- iii) Find $\cos \gamma$ (2 marks)
- iv) Show that $\underline{\mathbf{v}} = (\cos \alpha, \cos \beta, \cos \gamma)$

 $\|\mathbf{v}\|$ (2 marks)

- v) Show that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ (2 marks)
- b) Let V be a vector space, $\mathbf{u} \in V$ and α is a scalar. Prove that the following properties hold.
 - i) $0\mathbf{u} = 0$ (2 marks)
 - ii) $\alpha 0 = 0$ (2 marks)
 - iii) $(-1)\mathbf{u} = -\mathbf{u}$ (2 marks)
 - iv) If $\alpha \mathbf{u} = 0$ then $\alpha = 0$ or $\mathbf{u} = 0$ (4 marks)

QUESTION FIVE

- (2 marks) a) What is a homogenous system of linear equations?
- b) Distinguish between a matrix of coefficients and an augmented matrix

(2 marks)

c) Solve the following system of linear equations

(8 marks)

$$x_1 - 2x_2 + 4x_3 = 12$$

$$2x_2-x_2+5x_3=18$$

- $-x_1+3x_2-3x_3=-8$
- d) Use Gauss Jordan elimination to solve the following

(8 marks)

$$X_1 + X_2 + X_3 = 2$$

$$2x_1 + 3x_2 + x_3 = 3$$

$$x_1-x_2-2x_3 = -6$$