

(Knowledge for Development)

KIBABII UNIVERSITY UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER SUPPLEMETERY/SPECIAL EXAMINATION FOR THE DEGREE BACHELOR OF SCIENCE

COURSE CODE:

STA 121

COURSE TITLE: SAMPLE SURVEYS I

DATE:

28/07/2022

TIME: 11:00 AM - 1:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION 1:

(a) State three advantages of sampling over complete enumeration

(3 marks)

(b) Let the sample arithmetic mean $\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ be an estimator of the population

mean $\overline{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i$. Verify that \overline{y} is an unbiased estimator of \overline{Y} under:

i) Simple random sampling without replacement (SRSWOR),

(4 marks)

ii) Simple random sampling with replacement (SRSWR).

(4 marks)

- (c) Consider the estimation of \bar{y} under SRSWOR and SRSWR. Which of these two sampling schemes is more efficient in carrying out the estimation? (4 marks)
- (d) (i) Describe stratified sampling

(6 marks)

(ii) Given the following data

Stratum, h	N_{h}	S_h
1	45	10
2	20	19
3	65	5

For a fixed sample size, n= 60, obtain n_h under the,

(i) Optimum allocation scheme

(5 marks)

(ii) Proportional allocation scheme

(4 marks)

QUESTION 2:

(a) Distinguish Cluster from Stratified sampling scheme

(4 marks)

(b) Suppose it is desired that the coefficient of variation, CV of \bar{y} should not exceed a given or pre-specified value of coefficient of variation, say C_0 , then the required sample size n is to be determined such that,

$$CV(\overline{y}) \le C_0 \text{ or } \frac{\sqrt{\text{var}(\overline{y})}}{\overline{y}} \le C_0$$

Under these conditions, show that the smallest possible sample size $n_{smallest}$ is given by

$$n_{smallest} = \frac{C^2}{C_0^2}$$
, where C is the population coefficient of variation (16 marks)

QUESTION 3:

- (a) Given that p, a sample proportion is an unbiased estimator of a population proportion P, use the knowledge of $Var(\bar{y})$ to derive an expression for the Var(p). (7 marks)
 - (b) Assuming both N and n are large then $\frac{p-P}{\sqrt{Var(p)}}$ is approximately standard normal, N(0,1). Use this idea to write down the confidence interval of P at α level of significance. (4 marks)
- (c) Illustrate how you would obtain sample size by fixing the confidence interval length

(4 marks)

QUESTION 4:

(a) Describe Cluster Sampling procedure

(b) Distinguish Cluster from Stratified sampling scheme (3 marks)

(c) Suppose the number of words in a certain book is to be estimated. It is known that the book has 8 chapters and a total of 450 pages. A random sample of 4 chapters is selected using the simple random sampling procedure and the number of pages in the selected chapters is obtained. The data is given below.

Chapter	No. of pages(M _i)	Total no. of words	Si
1	36	9650	252.96
2	52	12191	265.49
3	98	20845	311.74
4	66	16022	294.65

Obtain

(i) The mean number of words per page (6 marks)

(ii) The total number of words in the book (7 marks)

OUESTION 5:

(a) Consider a relatively large sample of size n. Let the sample be randomly divided into k groups each of size m units such that n=mk.

Let \hat{S}^2 be the estimator of population variance S^2 and be defined as

$$\hat{S}^2 = \frac{m}{k-1} \sum_{i=1}^k (\overline{y}_i - \overline{y})^2$$

Show that $E(\hat{S}^2) = S^2$. Comment on the result. (10 marks)

(b) The variance, s² of a sample of size n may be given by

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \overline{y})^{2}$$

Verify that the sample variance, s^2 is an unbiased estimator of the population variance, S^2 . (10 marks)