

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS **2021/2022 ACADEMIC YEAR**

FIRST YEAR SECOND SEMESTER SUPPLENTARY EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

SCH 124 COURSE CODE:

COURSE TITLE: ORGANIC CHEMISTRY II

DURATION: 2 HOURS

TIME: 8:00AM-10:00AM DATE: 18/72022

INSTRUCTIONS TO CANDIDATES

- Answer QUESTION ONE (Compulsory) and any other two (2) Questions.
- Indicate answered questions on the front cover.
- Start every question on a new page and make sure question's number is written on each page.

This paper consists of 4 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

b) Discuss three methods for the resolution of enantiomers from their racemic mixture [10marks]

Question 3

- a) In each of the following pairs of compounds, one is chiral and the other is achiral. Identify each compound as chiral or achiral, as appropriate [8 marks]
 - (i) CICH2CHCH2OH and OHCH2CHCH2OH OH
 - (ii) $CH_3CH \longrightarrow CHCH_2Br$ and $CH_3CHCH \longrightarrow CH_2$ Br
- (iv) Br and Br CI
- b) Complete each of the following equations and name the main organic product. [8marks]
 - i. CH_2 = $CHCH_3$ + HBr \rightarrow $+ Cl_2$

Ouestion 1

- a) Define the following terms and provide examples in each case;
 - Constitutional isomers i.

[2 marks]

Stereoisomers ii.

[2 marks]

b) Give the other three names for a stereogenic centre

[3 marks]

c) Consider the structure below

Label the stereogenic centres in the structure above using asterisk(*) i.

[3marks]

How many possible stereoisomers can be generated for this structure? ii.

[3marks]

d) Calculate the specific rotation of the sample, if solution of the sample containing 0.75 g/10 mL is placed in 10 m polarimeter tube and its observed rotation at 25°C (D-line) is +1.2°. What would be [4marks]

the specific rotation and percentage optical purity of its enantiomer?

e) Consider the chemical structure of 2-aminobutane shown below. Citing down the C2-C3 bond, draw a [3marks]

Newman projection specifically for this structure.

Classify the following as either nucleophile or electrophile; water, Ethanoate ion, Aluminium [5marks] chloride, ammonia and Carbonium ion

What is meant by hydroboration-oxidation reaction? Illustrate it with an example. [3marks]

h) State whether the molecule below is a cis or trans.

[2marks]

Question 2

a) By assigning R/S configuration to stereogenic centres, give the relationships between the following structures as either "same", "enantiomers", or "diastereomers". [10marks]

iv.

c) Provide a detailed, step-by-step mechanism for the reaction in b (iv) above.

[4 marks]

Question 4

- a) Draw all conformers for 3-methylpentane by viewing along C2-C3 bond, and order them from the most stable to least stable. [8marks]
- b) For the following molecule, perform a complete conformational analysis using the data provided in tables in the course packet (or in the book). Follow the steps below to complete the analysis.

- i. Draw the two chair conformations possible for the compound. [4marks]
- ii. Calculate the energy difference between the two chair conformations. [3marks]
- iii. Estimate the ratio of most stable to least stable conformation for a sample of this compound at 25 °C. [1mark]
- C) The strain energy of spiropentane (62.5 kcal/mol) is more than twice that of cyclopropane (27.3 kcal/mol). Suggest an explanation. [4marks]

spiropentane cyclopropane

Question 4

- a) State four differences between E1 and E2 reaction mechanisms
 b) Explain two processes by which rearrangement of carbocations occur
 [4marks]
- c) Predict the major product for each of the following reactions if carbocation occurs rearrangement and suggest the mechanism in each. [12marks]