

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER
SUPPLEMENTARY/SPECIAL EXAMINATIONS

FOR THE DEGREE OF B.Sc. (CHEMISTRY)

COURSE CODE: SCH 213

COURSE TITLE: BASIC CHEMICAL THERMODYNAMICS

DATE: 18/7/2022 TIME: 8:00AM-10:00AM

INSTRUCTIONS TO CANDIDATES:

TIME: 2 Hours

Answer Question ONE and any TWO of the remaining

KIBU observes ZERO tolerance to examination cheating

QUESTION ONE (30 Marks)

(a) Define the following terms

1)	Cline the folio	(2Marks)
i.	Process	(2Marks)
	77. 1	(Ziviai KS)

- Work 11. (2Marks)
- iii. Heat (2Marks) Reversible process iv.
- (b) Deduce the numerical values of gas constant R using ideal gas equation pv = nRT(3Marks)

(2marks) (c) (i) State the Hess's law

(ii) . From the following enthalpies of reaction

$$H_{2 (g)} + F_{2 (g)} \rightarrow 2HF_{(g)} \Delta H = -537 \text{ kJ}$$

$$C_{(s)} + 2 F_{2 (g)} \rightarrow CF_{4 (g)} \Delta H = -680 \text{ kJ}$$

 $2~C_{(s)} + 2~H_{2~(g)} \rightarrow C_2H_4~(_{g)}\,\Delta H = -52.3~kJ$

Calculate the ΔH for the reaction of $C_2H_{4\,(g)}$ with $F_{2\,(g)}$ to make $CF_{4\,(g)}$ and $HF_{(g)}$ (3marks)

(d)(i) Starting with E = q + W, show that the heat capacity at constant pressure is given

by
$$C_p = \left(\frac{dH}{dT}\right)$$
 (4Marks)

- (2Marks) (e) (i) Define a system
- (3Marks) (ii)State the three thermodynamic systems
- (f) Using $E = \frac{1}{2}mv^2$ show that kinetic energy of a system is given by $E_k = \frac{3}{2}RT$

(5Marks)

Question Two (20 Marks)

- (a) Using the first law of thermodynamics (dE = dq + dw), show the specific heat capacity at constant pressure is given by $C_p = \left(\frac{dH}{dT}\right)$
- (b) Using the ideal gas equation. Derive and state the physical significance of gas constant (5 marks)
- (5 marks) (c) Show that $C_p - C_v = 1$

QUESTION THREE (20 Marks)

- (a) (i) Using E = q + W, show that $\left(\frac{T_2}{T_1}\right) = \left(\frac{V_1}{V_2}\right)^{\alpha 1}$ for reversible adiabatic expansion
- (ii) 2 moles of ideal gas 300K is compressed adiabatically to 1/4 of the original volume. Find temperature of the gas after compression ($C_v = 12.5jk^{-1}mol^{-1}$) (10Marks)

OUESTION FOUR (20 Marks)

- (2Marks) (a) (i) State the Carnot theorem
- (ii) Using the efficiency of the transformation of heat into work in a heat engine, show that (10Marks) $\frac{q_2}{T_2} + \frac{q_1}{T_1} = 0$
- (iii) From $\Delta S = C_v ln \frac{T_2}{T_1} + R ln \frac{V_2}{V_1}$ for one mole of a gas when temperature and volume are variables deduce the equation for entropy changes when pressure and temperature are (8Marks) variables

QUESTION FIVE (20 Marks) (a) Calculate the standard Gibbs free energy	for the reaction at 25°C	(5Marks)
$H_{2(s)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(g)}$ $(\Delta H^o = -285.64kJmol^{-1}, \Delta S = 1.89jK^{-1})$ (b) (i) State the second law of thermodynamics (ii) Define the term entropy		
(ii) Define the term entropy (iii) Using the information given below, calc $2CO_{(s)} + O_{2(g)} \rightarrow 2CO_{2(g)}$ at 25°C	(6Marks)	
CO_2 CO O_2	$S^{\theta}jK^{-1}mol$ 148 47 205	
(c) (i) What is a state variables (ii) State any three examples of state variables	es	(2Marks) (3Marks)