

(Knowledge for Development)

KIBABII UNIVERSITY UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR FIRST YEAR FIRST SEMESTER MAIN EXAMINATION

FOR THE DEGREE OF MASTER OF SCIENCE IN STATISTICS

COURSE CODE: STA 801

COURSE TITLE: MEASURE THEORY AND PROBABILITY

DATE: 26/05/2021 **TIME**: 9:00 AM - 11:00 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One any other Two Questions

TIME: 2 Hours

QUESTION ONE (30 MARKS)

- 1. (a) State and explain a probability space using its standard notation. (5 mks)
 - (b) Suppose $E_1, E_2 \in \mathcal{F}$, Show that \mathcal{F} , is an algebra. (5 mks)
 - (c) Let $0 \le f_n \to f$ almost everywhere and $\int f_n d\mu \le A < \infty$, show that f is integrable and $\int f d\mu \le A$ (5 mks)
 - (d) Let X and Y be independent random variables. Show that

$$E[X|Y=y]=E[X]$$

(5 mks)

- (e) Suppose (X, \mathcal{F}, μ) is a measure space and f and g are measurable functions on X and $A, B \in \mathcal{F}$. State the properties of f and g. (5 mks)
- (f) If X_1, X_2, \ldots are independent random variables such that $E[x_n] = \mu$ and $Var[X_n] \leq \sigma^2$ for each n, show that $\frac{X_1 + \ldots + X_n}{n} \to \mu$ in probability. (5 mks)

QUESTION TWO (20 MARKS)

- 2. (a) What are Lebesgue measurable sets? (2 mks)
 - (b) Describe any two Lebesgue measurable sets (4 mks)
 - (c) State and explain any four measurable functions (8 mks)
 - (d) Show that if $\{f_n\}$ is a sequence of non-negative measurable functions, and $\{f_n(x): n \leq 1\}$ increases monotonically to f(x) for each x then

 $\lim_{n \to \infty} \int_{E} f_{n}(x) d\mu = \int_{E} f d\mu$

(6 mks)

QUESTION THREE (20 MARKS)

3. (a) Let A_1, A_2, \ldots be a sequence of events. Show that:

i. if
$$\sum P(A_n) < \infty$$
 then $P(\limsup A_n) = 0$ (5 mks)

ii. if
$$\sum P(A_n) = \infty$$
 then $P(\limsup A_n) = 1$ (5 mks)

(b) Suppose $f = \sum_{i} x_{i} I_{Ai}$ is a non negative simple function, $\{A_{i}\}$ being decomposition of S into F sets, show that

$$\int f d\mu = \sum_{i} x_{i} \mu(A_{i})$$

(6 mks)

(c) State five (equivalent) conditions for the random variables X_1, \ldots, X_n to be independent. (4 mks)

QUESTION FOUR (20 MARKS)

- 4. (a) Suppose X is a random with the distribution μ_X . Show that $E(X) = \int_R x \ d\mu_X$ (10 mks)
 - (b) Suppose $\{B_n\}$ is sequence of independent events and $\sum_n P\{B_n\} = \infty$. Show the probability that B_n occurs infinitely often is one. (10 mks)

QUESTION FIVE (20 MARKS)

- 5. (a) State and explain two properties of conditional expectation (4 mks)
 - (b) Find the mathematical expectation of a random variable with: (6 mks)
 - (c) Let $f_n \ge 0$ be a measurable function. Show that $\int_x \liminf_x f_n d\mu \le \lim \inf_x \int_x f_n d\mu$ as $n \to \infty$ (10 mks)