



(Knowledge for Development)

#### KIBABII UNIVERSITY

### KIBABII UNIVERSITY

**UNIVERSITY EXAMINATIONS** 

**2021/2022 ACADEMIC YEAR** 

FOURTH YEAR FIRST SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: STA 412

COURSE TITLE: PROBABILITY AND MEASURE

**DATE**: 25/05/2022 **TIME**: 2:00 PM - 4:00 PM

#### **INSTRUCTIONS TO CANDIDATES**

Answer Question One and Any other TWO Questions

TIME: 2 Hours

## ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS

### QUESTION ONE (30 MARKS)

- 1. (a) Define the following terms
  - i. Probability space (1 mk)
  - ii. Borel set (1 mk)
  - iii. Sigma-algebra (1 mk)
  - iv. Measurable sets (1 mk)
  - (b) Describe any two Lebesgue measurable sets. (4 mks)
  - (c) Let  $A, B \subset E$  such that  $\mu^*(A)$  and  $\mu^*(B)$  are both finite. Show that,  $|\mu^*(A) \mu^*(B)| \le \mu^*(A\Delta B)$  where  $(A\Delta B) := (AB^c) \cup (BA^c)$  (5 mks)
  - (d) If  $A \subset B$ , show that  $\mu^*(A) \ge \mu^*(B)$ . (3 mks)
  - (e) Prove that if  $0 \le f_n \to f$  almost everywhere and  $\int f_n d\mu \le A < \infty$ , then f is integrable and  $\int f d\mu \le A$  (3 mks)
  - (f) State and explain any two types of measures on the intervals over the real line. (5 mks)
  - (g) Suppose that  $A, B \in \mathcal{A}$ . Show that  $\mu(B) = \mu(A \cap B) + \mu(B \cap A')$  (3 mks)
  - (h) Let  $\{F_i \subset \mathbb{R}^n : i \in \mathbb{N}\}$  is countable collection of  $\mathbb{R}^n$ . Show that

$$\sum_{i=1}^{\infty} \mu^*(F_i) \ge \mu^*(\bigcup_{i=1}^{\infty} F_i)$$

(3 mks)

# QUESTION FOUR (20 MARKS)

- 4. (a) State and explain two properties of conditional expectation (4 mks)
  - (b) Find the mathematical expectation of a random variable with (9 mks)
    - i. uniform distribution over the interval [a, b]
    - ii. triangle distribution
    - iii. exponential distribution
  - (c) Show that if  $\{f_n\}$  is a sequence of positive measurable functions, and  $\{f_n(x): n \leq 1\}$  increases monotonically to f(x) for each x then

$$\lim_{n \to \infty} \int_{E} f_{n}(x) dm = \int_{E} f dm$$
 (7 mks)

## QUESTION FIVE (20 MARKS)

- 5. (a) What are Lebesgue measurable sets? (2 mks)
  - (b) Describe any two Lebesgue measurable sets (4 mks)
  - (c) State and explain any four measurable functions (8 mks)
  - (d) Show that if  $\{f_n\}$  is a sequence of non-negative measurable functions, and  $\{f_n(x): n \leq 1\}$  increases monotonically to f(x) for each x then

$$\lim_{n \to \infty} \int_{E} f_{n}(x) dm = \int_{E} f dm$$
(6 mks)