

(Knowledge for Development) KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER

SPECIAL/SUPPLIMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE:

STA 221/242

COURSE TITLE:

PROBABILITY AND DISTRIBUTION MODELS

DATE:

26/07/2022

TIME: 8 AM -10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

(a) Define the term moment generating function

(1 mk)

- (b) State the relationship between a CDF and PDF as used in probability theory (1 mk)
- (c) Given a probability distribution function

$$f(x) = \begin{cases} Cx^2 & \text{if } 0 < x < 1 \\ 0 & \text{elsewhere} \end{cases}$$

Find the value of *C* and hence the median and interquartile range

(6 mks)

(d) For a chi-square distribution with r degree of freedom and its distribution density given as;

$$f(x) = \begin{cases} \frac{1}{2^{r/2} \Gamma(r/2)}, & x^{\frac{r-2}{2}}, e^{-\frac{x}{2}}, & x > 0 \\ 0, & elsewhere \end{cases}$$

Show that moment generating function, $m(t)=(1-2t)^{-r/2}$, hence or otherwise find E(x) and Var(x).

(10 marks)

(e) Let X and Y be two random variables each taking three values -1, 0 and 1, and having the joint probability distribution

			\boldsymbol{x}		
		1		1	Sum
У		- 1	0 1	0.1	0.2
	- 1	0	0.1	0.2	0.6
	0	0.2	0.2	0.2	0.2
	1	0	0.1	0.1.	0.2
	1	0.2	0.4	0.4	1.0
	Sum	0.2	rant Expectations		(2 mks

Show that X and Y have different Expectations (i)

Prove that X and Y are uncorrelated

(3 mks)

- Given that Y = 0, what is the conditional probability distribution of X(3 mks) (ii) (iii)
- Find Var(Y|X=-1)(iv)

(4mks)

QUESTION TWO (20 MARKS)

Three coins are tossed. X denotes the number of heads on the first two coins, Y denotes the number of tails on the last two coins and Z denotes the number of heads on the last two coins. Required, find;

- (a) The joint distribution of (i) X and Y (ii) X and Z
- (b) The conditional distribution of Y given X = 1
- (c) E(Z|X = 1)
- (d) The correlation coefficient between X and Y

QUESTION THREE (20 MARKS)

(a). For a gamma distribution with parameters α and β ;

$$\Gamma(\alpha) = \int_0^\infty y^{\alpha - 1} e^{-y} dy \quad with \quad y = \frac{x}{\beta} \quad where \quad \beta > 0$$

Show that moment generating function is

$$m(t) = \frac{1}{(1 - \beta t)^t}$$

Hence or otherwise using the moment generating function, find the Var(x). (12 marks) (b) Given that $X \sim Exp(\beta)$ i.e. $f(x, \beta) = \frac{1}{\beta} e^{-x/\beta}$, x >0. Find the moment generating function

of the distribution and hence it's mean and variance.

(8 marks)

QUESTION FOUR (20 MARKS)

(a) Two random variables X and Y have the following joint probability density function

$$f(x,y) = \begin{cases} 2 - x - y & \text{if } 0 \le x \le 1, & 0 \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Find

(i) Marginal probability density functions of X and Y

(3mks)

(ii) Conditional density functions

(3mks)

(iii)Covariance between X and y

(5 mks)

(b). Consider the following bivariate function defined by;

$$f(x, y) = \{k(6-x-y) \mid 0 < x < 2, 2 < y < 4\}$$

0, otherwise.

Determine the value of the constant k such that f(x,y) is the probability density function, hence evaluate the following.

(i).
$$p(x \le 1, y \le 3)$$

(ii).
$$p(x+y < 3)$$

(9 mks)

QUESTION FIVE (20 MARKS)

The joint probability function of two discrete random variables X and Y is given by f(x,y) = k(2x+y), where x and y assume all integers such that $0 \le x \le 2$, $0 \le y \le 3$, and f(x,y) = 0 otherwise. The probabilities associated with these points, given by k(2x+y), are shown in the table below;

				Y		
~		0	1	2	3	Total
	0	0	k	2 <i>k</i>	3 <i>k</i>	6 <i>k</i>
V	1	21/2	3 k	4 <i>k</i>	5 <i>k</i>	14k
X	1	11-	5k	6 <i>k</i>	7 <i>k</i>	22 <i>k</i>
	2	46	Ok	124	15k	42 <i>k</i>
	Total	6k	98	121	1310	

Required, find;

(i) the value of the constant k

(2mks)

(iii) P(X = 2, Y = 1). (1mk) (iii) $P(X \ge 1, Y \le 2)$. (1mks) (iv) the marginal probability function of X and Y. (4mks) (v) Evaluate E(X), E(Y), E(X,Y), $E(X^2)$, $E(Y^2)$, Var(X), Var(Y) and Cov(X,Y)(9mks) (vi) Show that the random variables X and Y are independent. (3mks)

END