

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2021/2022 ACADEMIC YEAR
FIRST YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF MASTER OF SCIENCE IN PURE MATHEMATICS

COURSE CODE: MAT 823

COURSE TITLE: FUNCTIONAL ANALYSIS II

DATE: 26/05/2021 **TIME**: 9:00 AM - 11:00 AM

INSTRUCTIONS TO CANDIDATES

Answer Any THREE Questions

TIME: 2 Hours

QUESTION ONE (20 MARKS)

- a) Define the following
 - i. Parallelogram equality
 - ii. Orthogonal
- b) Show that space \mathcal{L}^2 is a Hilbert space is a Hilbert space with inner product defined by $\langle x, y \rangle = \sum_{j=1}^{\infty} \varepsilon_j \eta_j$
- c) Show that the space \mathcal{L}^p $(p \neq z)$ is not an inner product space, hence not a Hilbert Space
- d) Show that for any inner product space X, there exists a Hilbert space H and an isomorphism A from X on to a dense subspace $W \subseteq H$ such that the space H is unique except for isomorphisms.

QUESTION TWO (20 MARKS)

- a) Define the following terms
 - i. Segment
 - ii. Convex
- b) Given M is a complete subspace of Y and $x \in X$ fixed, show that z = x y is orthogonal to Y
- c) Show that an orthogonal set is linearly independent
- d) State the Bessel inequality

QUESTION THREE (20 MARKS)

- a) Define the following terms
 - i. Total orthonormal set
 - ii. Parseval relation
 - iii. Isomorphism
- b) State Riesz's theorem
- c) Let H_1 , H_2 be Hilbert spaces and $h: H_1 \times H_2 \to K$ a bounded sesquilinear form. Show that h has a representation $h(x, y) = \langle sx, y \rangle$ where $S: H_1 \to H_2$ is a bounded linear operator. S is uniquely determined by h and has norm $\| s \| = \| h \|$

QUESTION FOUR (20 MARKS)

- a) Define the adjoint operator T^{\times}
- b) Show that the adjoint operator T^{\times} is linear and bounded and $\parallel T^{\times} \parallel = \parallel T \parallel$
- c) Show that every Hilbert space H is reflexive
- d) State the uniform Boundedness Theorem

QUESTION FIVE (20 MARKS)

- a) Define the following terms
 - i. Strong convergence
 - ii. Weak convergence
 - iii. Uniformly operator convergent
 - iv. Strongly operator convergent
 - v. Weakly operator convergent
- b) Show that an A-summability method with matrix $A = (\alpha_{nk})$ is regular if and only if
 - i. $\lim_{n\to\infty} \alpha_{nk} = 0$ for k=1,2....
 - ii. $\lim_{n\to\infty}\sum_{k=1}^{\infty}\propto_{nk}=0$
 - iii. $\sum_{k=1}^{\infty} |\propto_{nk}| \le r$ for n=1,2 where r is a constant which does not depend on n
- c) State the open mapping theorem