

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2021/2022 ACADEMIC YEAR
FIRST YEAR FIRST SEMESTER
MAIN EXAMINATION

FOR THE DEGREE OF MASTER OF SCIENCE IN STATISTICS

COURSE CODE: STA 806

COURSE TITLE: THEORY OF LINEAR MODELS

DATE: 26/05/2021 **TIME**: 2:00 PM - 4:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One any other Two Questions

TIME: 2 Hours

QUESTION ONE (30 MARKS)

(a). Consider a linear regression model.

Show that the model can be written in matrix form as

$$\underline{\mathbf{Y}} = \mathbf{X}\boldsymbol{\beta} + \underline{\boldsymbol{\varepsilon}}$$

Where \underline{Y} , β and $\underline{\varepsilon}$ are vectors of order $n\times 1$; $(k+1)\times 1$ and $n\times 1$ respectively,

while X is a matrix of

order $n \times (k+1)$.

(4marks)

$$\frac{\stackrel{\wedge}{\beta}}{=} (X^T X)^{-1} X^T Y$$

(4marks)

(b) Let $S^2 = \frac{1}{n-k-1} \sum_{i=1}^{n} (y_i - \underline{X}_i^T \underline{\beta})^2$ where \underline{X}_i^T is the i-th row of the matrix X. Show

that if

$$Var(\varepsilon) = \sigma^2 I$$

 $Var(\underline{\varepsilon}) = \sigma^2 I$ then $E(S^2) = \sigma^2$

(6marks)

(c). In part (b) Let $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$ be the predicted value of Y. Let $\underline{X}^T = (1 \ X)$ such

that
$$\hat{y} = \hat{\beta}_x^T \underline{X} + \varepsilon$$

Show that if $\underline{Z}^T = (1 \text{ cx})$ where $c = \int_x^{\Lambda} \underline{X} = \beta_x^{\frac{1}{2}} \underline{X}$ where $\beta_z^{\frac{1}{2}}$ is the Least square estimator of $\underline{\beta}$ (6 marks) assuming $Y = \beta^T \underline{Z} + \varepsilon$

(d). Let $\underline{Y} = \beta_0 + \beta_1 X + \varepsilon$ where ε is the error term. Using results in part (b) or, otherwise deuce the least square estimators of β_0 and β_1 say β_0 and

 β_1 respectively. Show that

(i).
$$E(\beta_0^{\Lambda}) = \beta_0$$

(ii). $E(\stackrel{\Lambda}{\beta_1}) = \beta_1$

Determine

(iii). Var
$$(\stackrel{\wedge}{\beta_0})$$

(iv). Var $(\hat{\beta}_1)$

(v). Cor
$$(\stackrel{\Lambda}{\beta_0}, \stackrel{\Lambda}{\beta_1})$$

(10 marks)

QUESTION TWO(20 MARKS)

(a). Show that if E(Y) = $X \underline{\beta}$ and Cor (\underline{Y}) = $\sigma^2 I$ then the least square estimators $\hat{\beta}_I$,

j = 0,1,...,k, have minimum variance among all linear unbiased estimators. (10 marks)

- (b). Using part (a) or otherwise, show that if $E(\underline{Y}) = X\underline{\beta}$ and $Cov(\underline{Y}) = \sigma^2 I$, then the best linear unbiased estimator of $\underline{a}^T\underline{\beta}$ is $\underline{a}^T\underline{\beta}$ where $\underline{\beta}$ is the least square estimator of $\underline{\beta}$. (5marks)
- (c). Does the results in part (a) rely on the distribution of the random vector \underline{Y} ? Comment (5marks)

QUESTION THREE (20 MARKS)

(a). Show that if $\underline{Y} \sim N_n[X \ \underline{\beta}, \ \sigma^2 I]$ where X is $n \times (k+1)$ matrix of rank k+1 < n, the maximum likelihood estimator of $\underline{\beta}$ and σ^2 are $\underline{\hat{\beta}} = (X^T X)^{-1} X^T \underline{Y}$

and
$$\sigma^{\Lambda} = \frac{1}{n} (\underline{Y} - X \underline{\beta})^{\mathrm{T}} (Y - X \underline{\beta})$$
 (10 marks)

(b). Using the results in part (a), or otherwise, Show that

(i).
$$\stackrel{\Lambda}{\beta}$$
 is $N_{k+1} \left[\underline{\beta}, \sigma^2 (X^T X)^{-1} \right]$

- (ii) $n \frac{\sigma^2}{\sigma^2}$ is chi-square with degrees of freedom = n-k-1
- (iii). $\frac{\delta}{\beta}$ and σ^2 are independent. (10 marks)

QUESTION FOUR(20 MARKS)

Consider the data in the following table

Observation Number	Y	X_1	X_2
1	2	0	2
2	3	2	6
3	2	2	7
4	7	2	5
5	6	4	9
6	8	4	8
7	10	4	7
8	7	6	10
9	8	6	11
10	12	6	9
11	11	8	15
12	14	8	13

(a). Show how the date can be modeled by a regression model given by

$$\underline{\mathbf{Y}} = \mathbf{X} \underline{\boldsymbol{\beta}} + \underline{\boldsymbol{\varepsilon}}$$

(5marks)

(b). Compute the least square estimate of $\frac{\hat{\beta}}{\beta}$.

(5marks)

(c). If $\operatorname{Var}(\underline{\varepsilon}) = \sigma^2 I$ is known, calculate $\operatorname{Var}(\underline{\beta})$.

(5marks)

(d). Calculate the estimate of the estimator S^2 , defined in question one (b).

(5 marks)

QUESTION FIVE (20 MARKS)

For the multiple regression model given by $\beta' = [\beta \ \beta 1 \ \beta 2]$ and

$$X = \begin{matrix} 1 & -1 & -1 \\ 1 & -1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{matrix}$$

- (a) Find rank(X);
- (b) Find a generalized inverse of X X;
- (c) Hence find a least squares estimator of β ;
- (d) Check whether or not $\beta 1$ is estimable;
- (e) check whether or not $\beta 1 + \beta 2$ is estimable.