



# KIBABII UNIVERSITY

## UNIVERSITY EXAMINATIONS **2020/2021 ACADEMIC YEAR**

### THIRD YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF B.SC (PHYSICS)

COURSE CODE:

**SPC 322** 

COURSE TITLE:

**ELECTROMAGNETISM** 

**DURATION: 2 HOURS** 

DATE: 06/09/2022

TIME: 2:00PM-4:00PM

#### INSTRUCTIONS TO CANDIDATES

Answer **QUESTION ONE** (Compulsory) and any other two (2) Questions.

The following constants might be used:  $K_e=9.0x10^9 \text{ N.m}^2/\text{C}^2$ ;  $M_e=9.1x10^{-31} \text{ kg}$ ;  $M_p=1.6x10^{-27} \text{ kg}$ ;  $e=1.60x10^{-19}$  C

KIBU observes ZERO tolerance to examination cheating

#### **QUESTION ONE [30 Marks]**

a) State Coulombs law.

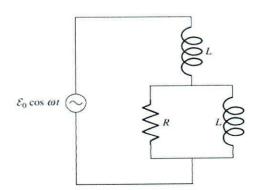
- [2]
- b) The distance between the two protons in helium nucleus could be at one instant as much as 10<sup>-15</sup> m. How large is the force of electrical repulsion between two protons at the distance?
- c) A point charge q=-8.0 nC is located at the origin. Find the electric field vector at the field point x=1.2 m, y=-1.6 m.[4]
- [2] d) Define electric potential,  $\phi_{12}$  and give its SI unit.
- e) Two protons and two electrons are located at corners of a rectangle with side a and b. there are two essentially different arrangement. Calculate the work required to assemble the system.
- f) Electric charge is distributed uniformly a long an infinitely long, thin wire. Assuming the charge per unit length λ. find the electric field using Gauss's [4]
- g) Find the potential at a distance r from a very long line of charge with linear charge density (charge [4] per unit length)  $\lambda$ .
- [2] h) Define capacitance.
- The parallel plates of a 1.0 F capacitor are 1.00 mm apart. What is their area? [2]
- [1] Write an expression for Ampere's law.
- k) A copper wire L=1 km long is connected across a V=6V battery. The resistivity of copper is ρ =1.7 $\times$ 10<sup>-8</sup>m, and the number of electrons per cubic meter is N=8.0 $\times$ 10<sup>28</sup> m<sup>-3</sup>. What is the drift velocity of the conduction electrons under these circumstances? [2]

#### **QUESTION TWO [20 Marks]**

- a) A sphere has radius R and uniform charge density p. Find the potential for all values of r, both inside and outside the sphere. Take the reference point P1 to be infinitely far away. Draw a plot of  $\phi(r)$  for the whole distance.
- b) The electric field equals the negative gradient of the potential, i.e.  $\vec{E} = -\nabla \phi$ . Show that  $\nabla \times \vec{E} = 0$ . [4]
- c) A charge 2q is at the origin, and a charge -q is at x=a on the x-axis. Find the point on x-axis where the electric field is zero. [4]

## **QUESTION THREE [20 Marks]**

a) Give an expression for Biot-savart law.


- [2]
- b) Prove that the vector potential  $\vec{A}$  for a long straight wire carrying a current I is given

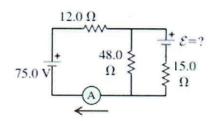
$$\vec{A} = -\hat{Z}\frac{\mu_0 I}{2\pi} \ln r \,. \tag{5}$$

c) Use Biot-savart law to calculate the field at a distance b from an infinite straight wire carrying current I. [13]

#### **QUESTION FOUR [20 Marks]**

a) The circuit shown has two equal inductors L and a resistance R. The frequency of emf source,  $\varepsilon_0 \cos \omega t$ , is chosen to be  $\omega = \frac{R}{L}$ .




- i. What is the total complex impedance of the circuit? Give it in terms of R only. [4]
- ii. If the total current through the circuit is written as  $I_0 \cos(\omega t + \phi)$ , what are  $I_0$  and  $I_0$ ? [4]
- iii. What is the average power dissipated in the circuit? [4]
  b) State Kirchhoff's junction rule. [1]
  - b) State Kirchhoff's junction rule.c) Show that the equivalent resistance for resistors in a parallel circuit is given by
  - $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$  [4]
  - d) A 10-M $\Omega$  resistor is connected in series with a 1.0  $\mu$ F capacitor and a battery with emf 12.0 V. Before the switch is closed at a time t=0, the capacitor is uncharged. What is the time constant? [3]

### **QUESTION FIVE [20 Marks]**

a) In the circuit shown, both batteries have insignificant internal resistance and the idealized ammeter reads 1.50 A in the direction shown. Find the emf ɛ of the battery. [6]

# SPC 322: Electromagnetism

20



| b) | Write down the complete set of Maxwell's equations.                                                                                                                        | [4] |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| c) | State the three properties of electromagnetic waves.                                                                                                                       | [3] |
| d) | A proton is moving in a circular orbit of radius 14 cm in a uniform 0.35T magnetic field perpendicular to the velocity of the proton. Find the linear speed of the proton. | [3] |
| e) | Define electric field at a point in space.                                                                                                                                 | [2] |
| f) | What is capacitance of a capacitor?                                                                                                                                        | [2] |
|    |                                                                                                                                                                            |     |