PARTITION OF MEASURABLE SETS

\author{

Abstract

 The theory of vector measure has attracted much interest among researchers in the recent past. Available results show that measurability concepts of the Lebesgue measure have been used to partition subsets of the real line into disjoint sets of finite measure. In this paper we partition measurable sets in \mathfrak{R}^{n} for $n \geq 3$ into disjoint sets of finite dimension.

}

AMS Subject Classification: Primary 20E45, 20H30; Secondary 28B15,28B20
Key Words and Phrases:Partition; Measurable cover; Extension procedures; countable additivity.

Council for Innovative Research

Peer Review Research Publishing System
Journal: JOURNAL OF ADVANCES IN MATHEMATICS
Vol .10, No. 8
www.cirjam.com , editorjam@gmail.com

1 INTRODUCTION

In this article, measurable cover estimate technique is applied to partition measurable sets. The utility of properties such as extension, countable additivity and contraction of the projective tensor product of vector measure duality is demonstrated. The process of partition requires that we vary all countable coverings of sets in a ring by sets in a σ-ring. Sequences of monotonically increasing (or decreasing) sets and integrability concepts of strictly increasing (or decreasing) functions are considered. For notations and basic concepts used in this paper, reference may be made to [1, 2, 3, 4, 5, 6]

2 Basic Concepts

2.1 Projective tensor product vector measure duality

Let $X_{1}, \ldots \ldots, X_{n}$ and Z be real Banach spaces with $\Phi: \prod_{i=1}^{n} X_{i} \rightarrow Z$ being a continuous linear function. If $\mu_{1}: R_{1} \rightarrow X_{1}, \ldots \ldots . . ., \mu_{n}: R_{n} \rightarrow X_{n}$ are countably additive vector measures, then the product $\Pi_{i=1}^{n} \mu_{i}$ is a countably additive vector measure defined on the ring $\Pi_{i=1}^{n} R_{i}$ generated by sets of the form $E_{1} \times \ldots \ldots \times E_{n}$. Let $\left(G\left(R_{1}\right), \ldots \ldots, G\left(R_{n}\right)\right)$ be a set of σ - rings generated by rings $R_{1}, \ldots \ldots, R_{n}$ respectively. If the extension of the vector measure $\Pi_{i=1}^{n} \mu_{i}: \Pi_{i=1}^{n} R_{i} \rightarrow \prod_{i=1}^{n} X_{i}$ to a vector measure $\prod_{i=1}^{n} \mu_{i}^{*}: \prod_{i=1}^{n} G\left(R_{i}\right) \rightarrow \prod_{i=1}^{n} X_{i}$ coincide with respect to a linear function $\Phi: \prod_{i=1}^{n} X_{i} \rightarrow Z$, where $Z=\Phi\left(\mu_{1}^{*}\left(E_{1}\right), \ldots \ldots ., \mu_{n}^{*}\left(E_{n}\right)\right)$ for $\mu_{i}^{*}\left(E_{i}\right) \in X_{i}, 1 \leq i \leq n$ and $\Pi_{i=1}^{n} X_{i}$ is a Banach space, then $\left(\Pi_{i=1}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(E_{i}\right), Z^{\prime}>$ is called the projective tensor product of vector measure duality between Z and its dual space Z^{\prime}.

2.2 3 \mathbf{D} section of a measurable set

Fix p_{n-2} for $n \in \aleph$ and $n \geq 3$. The set $\left(\prod_{i=1}^{n} E_{i}\right)^{p_{n-2}}=E_{n-2} \times E_{n-1} \times E_{n}$ is called a three dimensional section of a measurable set $\Pi_{i=1}^{n} E_{i}=N(f)$ such that $\iiint f \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(E_{i}\right), Z^{\prime}><\infty$.

3 Results

Proposition 1Let $f: \prod_{i=n-2}^{n} G\left(R_{i}\right) \rightarrow \prod_{i=n-2}^{n} X_{i}$ be an integrable function with respect to $\prod_{i=n-2}^{n}<\mu_{i}^{*}, Z^{\prime}>$. Suppose the set $\left(\left(e_{n-2}, e_{n-1}, e_{n}\right): f\left(e_{n-2}, e_{n-1}, e_{n}\right)>P\right)$ for $P>0$, is measurably covered by $\mathrm{N}(\mathrm{f})$. If $\left(\prod_{i=n-2}^{n}\right.$ $\left.E_{i}\right)_{e_{n-2}}$ is a countable partition of a set $\left(\left(e_{n-2}, e_{n-1}, e_{n}\right): f\left(e_{n-2}, e_{n-1}, e_{n}\right)>P\right)_{e_{n-2}}$ for a fixed $e_{n-2} \in E_{n-2}$ such that $\iint f \delta\left(\Pi_{i=n-1}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(E_{i}\right), Z^{\prime}><M$ for $M>0$, then $<T_{\left(\Pi_{i=n-1}^{n}\right)_{\Phi} \mu_{i}^{*}\left(E_{i}\right)}(f), Z^{\prime}>=0$

Proof.Let $N(f)=\left(\left(e_{n-2}, e_{n-1}, e_{n}\right): f\left(e_{n-2}, e_{n-1}, e_{n}\right) \neq 0\right)$. It can be deduced from [2, p.18] that $\left(\Pi_{i=n-2}^{n} E_{i}\right)_{e_{n-2}}=\Pi_{i=n-1}^{n} E_{i}$ for a fixed $e_{n-2} \in E_{n-2}$. Since by hypothesis $\left(\left(e_{n-2}, e_{n-1}, e_{n}\right): f\left(e_{n-2}, e_{n-1}, e_{n}\right)>P\right)$ $\Theta N(f)$ and $\left(\prod_{i=n-2}^{n} E_{i}\right)_{e_{n-2}}$ is a countable partition of $\left(\left(e_{n-2}, e_{n-1}, e_{n}\right): f\left(e_{n-2}, e_{n-1}, e_{n}\right)>P\right)_{e_{n-2}}$, it follows that $\left(\prod_{i=n-2}^{n} E_{i}\right)_{e_{n-2}}=\prod_{i=n-1}^{n} E_{i} \Theta(N(f))_{e_{n-2}} \Rightarrow\left(\left(e_{n-2}, e_{n-1}, e_{n}\right): f\left(e_{n-2}, e_{n-1}, e_{n}\right)>P\right)_{e_{n-2}}=\cup_{k=1}^{\infty} \prod_{i=n-1}^{n} E_{k_{i}} \quad$ for a countable partition $\prod_{i=n-1}^{n} E_{k_{i}}$ of $\prod_{i=n-1}^{n} E_{i}$. In this case, $\prod_{i=n-1}^{n} E_{i}$ can be written uniquely as a countable union of disjoint sets (see $\left[\begin{array}{ll}3 & \mathrm{p} .5\end{array}\right]$). Now, $\cup_{k=1}^{\infty} \prod_{i=n-1}^{n} E_{k_{i}}=\prod_{i=n-1}^{n} E_{i} \Rightarrow P \chi_{\Pi_{i=n-1}^{n} E_{i}} \leq \chi_{\Pi_{i=n-1}^{n} E_{i}} f \quad$ Let $(N(f))_{e_{n-2}}=\prod_{i=n-1}^{n} C_{i}$ be a set in a σ-ring $\prod_{i=n-1}^{n} G\left(R_{i}\right) \quad$ it follows that $\Pi_{i=n-1}^{n} E_{i} \subset \prod_{i=n-1}^{n} C_{i} \Rightarrow \prod_{i=n-1}^{n} E_{i} \Theta \prod_{i=n-1}^{n} C_{i}$. Let $\mu_{i C_{i}}^{*}$ be a vector measure defined on $G\left(R_{i}\right)$ for $i=n-1, n$. By extension procedures and integral representation of the contraction of $\mu_{n-1} \times \mu_{n}$ as illustrated in [6], we have $P<T_{\left(\Pi_{i=n-1}^{n}\right)_{\Phi} \mu_{i}^{*}\left(C_{i} \cap E_{i}\right)}(f), Z^{\prime}>\leq \iint f \delta\left(\Pi_{i=n-1}^{n}\right)_{\Phi}<\mu_{C_{i}}^{*}\left(E_{i}\right), Z^{\prime}><M P<T_{\left(\Pi_{i=n-1}^{n}\right)_{\Phi} \mu_{i}^{*}\left(C_{i} \cap E_{i}\right)}(f), Z^{\prime}>$
$\left.\leq \iint f \delta\left(\Pi_{i=n-1}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(C_{i} \cap E_{i}\right), Z^{\prime}><M \Rightarrow<T_{\left(\Pi_{i=n-1}^{n}\right)_{\Phi} \mu_{i}^{*}\left(C_{i} \cap E_{i}\right.}\right)(f), Z^{\prime}><M / P \quad$ But $E_{i} \subset C_{i}$ for
$1=n-1, n$.Therefore, $\left\langle T_{\left(\Pi_{i=n-1}^{n}\right)_{\Phi} \mu_{i}^{*}\left(E_{i}\right)}(f), Z^{\prime}\right\rangle=M / P$. As $P \rightarrow \infty,\left\langle T_{\left(\Pi_{i=n-1}^{n}\right)_{\Phi} \mu_{i}^{*}\left(E_{i}\right)}(f), Z^{\prime}\right\rangle=0$
Proposition 2 Let f and $f_{n}(n=1,2, \ldots$.$) for f_{n} \uparrow$ be integral functions with respect to $\left(\prod_{i=n-2}^{n}\right)_{\Phi}\left\langle\mu_{i}^{*}, Z^{\prime}\right\rangle$ such that $N\left(f_{n}\right)$ is measurably covered by $N(f)$. If $E_{i}=N\left(g_{n}\right) \subset N(f)-N\left(f_{n}\right)$ for ($n=1,2, \ldots$.) and $i=n-2, n-1, n$, we have $\iiint g_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}\left\langle\mu_{i}^{*}\left(E_{i}\right), Z^{\prime}\right\rangle\langle\varepsilon$, for $\varepsilon\rangle 0$
Proof.Let $N\left(f_{n}\right)=\left(\left(e_{n-2}, e_{n-1}, e_{n}\right): f_{n}\left(e_{n-1}, e_{n-1}, e_{n}\right) \neq 0\right)$ and $N(f)=\left(\left(e_{n-2}, e_{n-1}, e_{n}\right): f\left(e_{n-2}, e_{n-1}, e_{n}\right) \neq 0\right)$ be measurable sets of finite measure.Since $N\left(g_{n}\right) \subset N(f)-N\left(f_{n}\right)$ for each n , it follows that $g_{n} \downarrow 0$ for each n. Let $E_{n-2}=N\left(g_{n-2}\right)$ and $A_{k_{i}}$ be a countable partition of E_{i} for $i=n-2, n-1, n$. Now, $A_{k_{i}} \uparrow E_{i}$ for $i=n-2, n-1, n$ (see [3 p.20]).Suppose $N\left(g_{n-1}\right)=E_{i}-\cup_{k=1}^{\infty} A_{k_{i}}$ for $i=n-2, n-1, n$ It follows that $N\left(g_{n-1}\right)$ $\downarrow \varnothing$ Since g_{n-1} is integrable with respect to $\left.\Pi_{i=n-1}^{n}\right)_{\Phi}\left\langle\mu_{i}^{*}, Z^{\prime}\right\rangle$ (see [5]), $\Rightarrow \sum_{k=1}^{\infty} \iiint g_{n-1}$ $\delta\left(\prod_{i=n-1}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(E_{i}-A_{k_{i}}\right), Z^{\prime}>=0 \quad$ Let us vary the partition $A_{k_{o_{i}}}^{j}$ of $A_{k_{i}}$ such that $\Pi_{i=n-2}^{n} A_{k_{i}}=\cup_{j=1}^{\infty} \cup_{k_{o}=1}^{\infty} A_{k_{o_{i}}}^{j}$. It follows that $\sum_{j=1}^{\infty} \Sigma_{k_{o}=1}^{\infty} \iiint g_{n-1} \delta\left(\Pi_{i=n-1}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(E_{i}-A_{k_{o_{i}}}^{j}\right), Z^{\prime}><\varepsilon$. Let $A_{i}=\cup_{j=1}^{\infty} \cup_{k_{o}=1}^{\infty} A_{k_{o_{i}}}^{j} \Rightarrow \iiint g_{n-1} \delta\left(\Pi_{i=n-1}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(E_{i}-A_{i}\right), Z^{\prime}><\varepsilon$. As shown in [3, p. 21], if we partition E_{i} into disjoint sets $E_{i}-A_{i}$ and A_{i} for $i=n-2, n-1, n$ and apply the additivity property of multiple integral, we have $\iiint g_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}\left\langle\mu_{i}^{*}\left(E_{i}\right), Z^{\prime}\right\rangle=\iiint g_{n} \mid \delta\left(\prod_{i=n-2}^{n}\right)_{\Phi}\left\langle\mu_{i}^{*}\left(A_{i}\right), Z^{\prime}\right\rangle$. Since A_{i} is a countable partition of E_{i}, then $A_{i} \uparrow E_{i}$ and $A_{i} \subset E_{i}$ for each i.Since $E_{i}=N\left(g_{n}\right), g_{n} \downarrow 0$ for $i=n-2, n-1, n$, and $n=1,2, \ldots . \Rightarrow \iiint g_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(A_{i}\right), Z^{\prime}>=0$, it follows that $\iiint g_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(E_{i}\right), Z^{\prime}><\varepsilon$.
Proposition 3 Let $\Pi_{i=n-2}^{n} E_{i}$ be measurably covered by $N\left(f_{n}\right)$.If $\Pi_{i=n-2}^{n} C_{i}$ is a section of $\prod_{i=n-2}^{n} E_{i}$ such that $C_{k_{i}} \downarrow \varnothing$ for every countable partition $C_{k_{i}}$ of C_{i} for $i=n-2, n-1, n$, then
$\left.\iiint f_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(E_{i}\right), Z^{\prime}\right\rangle=\iiint f_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}\left\langle\mu_{i}^{*}\left(E_{i}-C_{i}\right), Z^{\prime}>\iiint f_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}\left\langle\mu_{i}^{*}\left(C_{i}-C_{k_{i}}\right), Z^{\prime}\right\rangle\right.$
Proof.Choose $\beta>0$ such that $\prod_{i=n-2}^{n} C_{i}=\left(\left(x_{n-2}, x_{n-1}, x_{n}\right): f\left(x_{n-2}, x_{n-1}, x_{n}\right)>\beta\right)$. Since $\prod_{i=n-2}^{n} C_{i}$ is a section of $\prod_{i=n-2}^{n} E_{i}$, then $C_{i} \uparrow E_{i}$ for $i=n-2, n-1, n$. Let $\iiint f_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(E_{i}-C_{i}\right), Z^{\prime}><\varepsilon$ for all n.Suppose we partition each E_{i} into disjoint sets $E_{i}-C_{i}$ and C_{i} for $i=n-2, n-2$, n. Since $\Pi_{i=n-2}^{n} E_{i} \Theta N\left(f_{n}\right)$, it follows that $\chi_{\Pi_{i=n-2}^{n} E_{i}} f_{n}=\chi_{\Pi_{i=n-2}^{n}\left(E_{i}-C_{i}\right)} f_{n}+\chi_{\Pi_{i=n-2}^{n} C_{i}} f_{n} \Rightarrow \iiint f_{n}$ $\delta\left(\prod_{i=n-2}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(E_{i}\right), Z^{\prime}>=\iiint f_{n} \delta\left(\prod_{i=n-2}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(E_{i}-C_{i}\right), Z^{\prime}>+\iiint f_{n} \delta\left(\prod_{i=n-2}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(C_{i}\right), Z^{\prime}>$.
Since $C_{k_{i}}$ is a countable partition of C_{i}, then C_{i} can be expressed as a union of disjoint measurable sets $E_{i}-C_{k_{i}}$ and $C_{k_{i}}$ Therefore,
$\iiint_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(C_{i}\right), Z^{\prime}>=\iiint f_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(C_{i}-C_{k_{i}}\right), Z^{\prime}>+\iiint f_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}\left\langle\mu_{i}^{*}\left(C_{k_{i}}\right), Z^{\prime}\right\rangle$.
By hypothesis, $C_{k_{i}} \downarrow \varnothing$.It follows that $\iiint f_{n} \delta\left(\prod_{i=n-2}^{n}\right)_{\Phi}\left\langle\mu_{i}^{*}\left(C_{k_{i}}\right), Z^{\prime}\right\rangle=0$. (see [1, p. 2]).
$\iiint f_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}\left\langle\mu_{i}^{*}\left(C_{i}\right), Z^{\prime}\right\rangle=\iiint f_{n} \delta\left(\prod_{i=n-2}^{n}\right)_{\Phi}\left\langle\mu_{i}^{*}\left(C_{i}-C_{k_{i}}\right), Z^{\prime}\right\rangle$. From the results above, we have $\iiint f_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}\left\langle\mu_{i}^{*}\left(E_{i}\right), Z^{\prime}>=\iiint f_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}\left\langle\mu_{i}^{*}\left(E_{i}-C_{i}\right), Z^{\prime}\right\rangle+\iiint f_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}\left\langle\mu_{i}^{*}\left(C_{i}-C_{k_{i}}\right), Z^{\prime}\right\rangle\right.$

Proposition 4 Let f be an integrable function. Suppose $\prod_{i=n-2}^{n} E_{k_{i}}$ is measurably covered by $\prod_{i=n-2}^{n}(N(f))_{i}$ in $\Pi_{i=n-2}^{n} G\left(R_{i}\right)$ such that $\iiint f_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(N(f)_{i}\right), Z^{\prime}><M$ for $M>0$. If $\Pi_{i=n-2}^{n} E_{k_{i}}$ is a countable partition of $\Pi_{i=n-2}^{n} E_{i}$ in $\prod_{i=n-2}^{n} R_{i}$ such that $\Pi_{i=n-2}^{n} \mu_{i}\left(E_{k_{i}}\right)<M / \varepsilon$, for $\varepsilon>0$, then $\Pi_{i=n-2}^{n} E_{i} \Theta \prod_{i=n-2}^{n}(N(f))_{i}$

Proof.Let $\prod_{i=n-2}^{n}(N(f))_{i}=((a, b, c): f(a, b, c) \neq 0) \in \prod_{i=n-2}^{n} G\left(R_{i}\right)$. Suppose $\Pi_{i=n-2}^{n} E_{k_{i}}=\left((a, b, c): f_{n}(a, b, c)>\varepsilon\right)$ and $\prod_{i=n-2}^{n} E_{i}=((a, b, c): f(a, b, c)>\varepsilon)$ are sets in $\prod_{i=n-2}^{n} R_{i}$. Since $\Pi_{i=n-2}^{n} E_{k_{i}}$ is a countable partition of $\prod_{i=n-2}^{n} E_{i}$, we have $E_{k_{i}} \uparrow E_{i}$ for $i=n-2, n-1, n$ and each $k \in \aleph$ (see [3 p.20]).So, $\prod_{i=n-2}^{n} E_{i}=\cup_{k=1}^{\infty} \Pi_{i=n-2}^{n} E_{k_{i}}$. Hence, $\varepsilon \chi_{\Pi_{i=n-2}^{n} E_{k_{i}}} \leq \chi_{\Pi_{i=n-2}^{n} E_{k_{i}}} f_{n}$. Let $\mu_{i_{N(f)}}^{*}$ be a vector measure defined on $G\left(R_{i}\right)$ for $i=n-2, n-1, n$. Since $\prod_{i=n-2}^{n} E_{k_{i}}$ is measurably covered by $\prod_{i=n-2}^{n}(N(f))_{i}$ for $i=n-2, n-1, n$, we have $E_{K_{i}} \subset(N(f))_{i}$. On application of extension procedures, we obtain $\varepsilon \prod_{i=n-2}^{n} \mu_{i_{N(f)}}^{*}\left(E_{k_{i}}\right) \leq \iiint f_{n} \delta\left(\prod_{i=n-2}^{n}\right)_{\Phi}\left\langle\mu_{i_{N\left(f_{i}\right.}}^{*}\left(E_{k_{i}}\right), Z^{\prime}>\Rightarrow \varepsilon \prod_{i=n-2}^{n} \mu_{i}^{*}\right.$ $\left(N(f)_{i} \cap E_{k_{i}}\right) \leq \iiint f_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(N(f)_{i} \cap E_{k_{i}}\right), Z^{\prime}>\varepsilon \Pi_{i=n-2}^{n} \mu_{i}^{*}\left(E_{k_{i}}\right) \leq \iiint f_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\phi}\left\langle\mu_{i}^{*}\left(E_{k_{i}}\right), Z^{\prime}>\right.$. By hypothesis, $\iiint f_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(N(f)_{i}\right), Z^{\prime}><M$ and $\Pi_{i=n-2}^{n} E_{k_{i}} \quad \Theta \Pi_{i=n-2}^{n} N(f)_{i}$. Therefore, $\left.\varepsilon \chi_{\Pi_{i=n-2}^{n} \mu_{i}^{*}\left(E_{k_{i}}\right.}\right) \leq \iiint f_{n} \delta\left(\prod_{i=n-2}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(E_{k_{i}}\right), Z^{\prime}><M \Rightarrow \prod_{i=n-2}^{n} \mu_{i}^{*}\left(E_{k_{i}}\right) \leq M / \varepsilon$. Since $\Pi_{i=n-2}^{n} E_{i}=\cup_{k=1}^{\infty} \Pi_{i=n-2}^{n} E_{k_{i}}$, we have $\Pi_{i=n-2}^{n} \mu_{i}^{*}\left(E_{i}\right) \leq M / \varepsilon \Rightarrow \prod_{i=n-2}^{n} E_{i} \Theta \prod_{i=n-2}^{n}(N(f))_{i}$.
Proposition 5 Let $\Pi_{i=n-2}^{n} E_{i}$ be measurably covered by $\prod_{i=n-2}^{n} F_{i}$. Suppose $\prod_{i=n-2}^{n} G_{i}$ is a measurable set such that $\Pi_{i=n-2}^{n} G_{i} \subset \Pi_{i=n-2}^{n}\left(F_{i}-E_{i}\right)$.If $\left.\left(a_{i}, b_{i}, c_{i}\right): f_{n}\left(a_{i}, b_{i}, c_{i}\right) \geq \varepsilon\right)$ is a finite partition of G_{i} for each $i=n-2, n-1, n$ and $n \in \mathcal{N}$ such that $f_{n} \downarrow 0$, then $\prod_{i=n-2}^{n}\left(\left(a_{i}, b_{i}, c_{i}\right): f_{n}\left(a_{i}, b_{i}, c_{i}\right) \geq \varepsilon\right)$ is an empty set.

Proof.Let $\Pi_{i=n-2}^{n} G_{i}=N\left(f_{1}\right), \Pi_{i=n-2}^{n} E_{i}=\prod_{i=n-2}^{n}\left(\left(a_{i}, b_{i}, c_{i}\right): f_{n}\left(a_{i}, b_{i}, c_{i}\right) \geq \varepsilon\right)$ and $M=\max \left(f_{1}\left(a_{i}, b_{i}, c_{i}\right)\right) \Rightarrow \chi_{\Pi_{i=n-2}^{n} G_{i}} f_{1} \leq f_{1}$. Since $f_{n} \downarrow 0$, it follows that $f_{n} \leq M \chi_{\Pi_{i=n-2}^{n} G_{i}}$ for all n. So $N\left(f_{n}\right) \subset N\left(f_{1}\right)=\prod_{i=n-2}^{n} G_{i} \Rightarrow \chi_{\Pi_{i=n-2}^{n} G_{i}} f_{n}=f_{n}$. (see [2, p. 5]) Since $\prod_{i=n-2}^{n} E_{i}$ is a finite partition of $\prod_{i=n-2}^{n} G_{i}$, it follows that $\prod_{i=n-2}^{n} G_{i}=\prod_{i=n-2}^{n}\left(\left(G_{i}-E_{i}\right) \cup E_{i}\right)$.Following disjoint partition of $\prod_{i=n-2}^{n} G_{i}$ (see [4, p. 6]) and on application of measurable cover estimate technique, we obtain
$\iiint f_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(G_{i}\right), Z^{\prime}>=\iiint f_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}\left\langle\mu_{i}^{*}\left(G_{i}-E_{i}\right), Z^{\prime}\right\rangle+\iiint f_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}\left\langle\mu_{i}^{*}\left(E_{i}\right), Z^{\prime}\right\rangle$.
Since $f_{n}\left(a_{i}, b_{i}, c_{i}\right)<\varepsilon$ on $\prod_{i=n-2}^{n}\left(G_{i}-E_{i}\right)$,it follows that $\iiint f_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(G_{i}-E_{i}\right), Z^{\prime}>\leq \varepsilon$ $\Pi_{i=n-2}^{n} \mu_{i}^{*}\left(G_{i}-E_{i}\right) \leq \varepsilon \prod_{i=n-2}^{n} \mu_{i}^{*}\left(G_{i}\right)$. Replacing $\prod_{i=n-2}^{n} G_{i}$ with $\prod_{i=1}^{n} E_{i}$ in the inequality $f_{n} \leq M \chi_{\Pi_{i=n-2}^{n} G_{i}}$, we obtain $\chi_{\Pi_{i=n-2}^{n} E_{i}} f_{n} \leq M \chi_{\Pi_{i=n-2}^{n} E_{i}}$. Therefore,
$\iiint f_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(G_{i}\right), Z^{\prime}>\leq \varepsilon \prod_{i=n-2}^{n} \mu_{i}^{*}\left(G_{i}\right)+M \prod_{i=n-2}^{n} \mu_{i}^{*}\left(E_{i}\right)$. Since $\prod_{i=n-2}^{n} G_{i} \subset \Pi_{i=n-2}^{n}\left(F_{i}-E_{i}\right)$ and $\prod_{i=n-2}^{n} E_{i} \Theta \prod_{i=n-2}^{n} F_{i}$ (by hypothesis), it follows that $\prod_{i=n-2}^{n} \mu_{i}^{*}\left(G_{i}\right)=0$. Since $f_{n} \downarrow 0$ for each n, it follows that $\iiint f_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(G_{i}\right), Z^{\prime}>=0$. Therefore, $\Pi_{i=n-2}^{n} E_{i}=\prod_{i=n-2}^{n}\left(\left(a_{i}, b_{i}, c_{i}\right): f_{n}\left(a_{i}, b_{i}, c_{i}\right) \geq \varepsilon\right)=\varnothing$.
Theorem 1 Let f_{n} be an integrable function with respect to $\left(\Pi_{i=n-2}^{n}\right)_{\Phi}<\mu_{i}^{*}, Z^{\prime}>$. For each $\varepsilon>0$, the set $\Pi_{i=n-2}^{n} A_{i}$ is measurably covered by $\Pi_{i=n-2}^{n} E_{i}=N\left(f_{n}\right)$ if $\iiint f_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(E_{i}-A_{i}\right), Z^{\prime}><\varepsilon$.

Proof.Let $\prod_{i=n-2}^{n} E_{i}=\left((a, b, c): f_{n}(a, b, c) \neq 0\right)$.Then, $\chi_{\Pi_{i=n-2}^{n} E_{i}} f_{n} \leq f_{n}$ where $\mu_{i}^{*}\left(E_{i}\right)<\infty$ for $i=n-2, n-1, n$. Let $P_{o}=\prod_{i=n-2}^{n} A_{k_{i}}$ be a countable partition of $\prod_{i=n-2}^{n} A_{i}$ such that for every countable partition $P=\prod_{i=n-2}^{n} E_{k_{i}}$ of $\prod_{i=n-2}^{n} E_{i}$ in $\prod_{i=n-2}^{n} G\left(R_{i}\right)$ we have $P_{o} \Theta P$. Since $\prod_{i=n-2}^{n} A_{i}=\cup_{k=1}^{\infty} \prod_{i=n-2}^{n} A_{k_{i}}$ and
$\Pi_{i=n-2}^{n} E_{i}=\cup_{k=1}^{\infty} \Pi_{i=n-2}^{n} E_{k_{i}}$, applying measurable cover estimate technique, we obtain
$\sum_{k=1}^{\infty} \iiint f_{n} \delta\left(\prod_{i=n-2}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(E_{k_{i}}-A_{k_{i}}\right), Z^{\prime}><\varepsilon / 3$. Consider the the partition $P_{m^{\prime}}=\left(\prod_{i=n-2}^{n} C_{k_{i}}: k=1,2, \ldots \ldots\right.$.) of $P-P_{o}=\prod_{i=n-2}^{n}\left(E_{k_{i}}-A_{k_{i}}\right)$ such that $\prod_{i=n-2}^{n}\left(E_{k_{i}}-A_{k_{i}}\right)=\cup_{k=1}^{\infty} \prod_{i=n-2}^{n} C_{k_{i}}$ and $\left(P-P_{o}\right) \Theta P_{m^{\prime}} \iiint f_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(\cup_{k=1}^{\infty} C_{k_{i}}-\left(E_{k_{i}}-A_{k_{i}}\right)\right), Z^{\prime}><\varepsilon / 3$. There is a sequence $\left(P_{k_{i}}{ }^{\prime}\right)_{k \in \mathbb{M}}=\prod_{i=n-2}^{n} B_{k_{i}}$ of a countable partitions of $P_{m^{\prime}}$ in $\prod_{i=1}^{3} G\left(R_{i}\right)$ such that $\prod_{i=n-2}^{n} C_{k_{i}}=\cup_{k=1}^{\infty} \prod_{i=n-2}^{n} B_{k_{i}}$ and $P_{m^{\prime}} \Theta P_{k_{i}}^{\prime} \Rightarrow \iiint f_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(\cup_{k=1}^{\infty} B_{k_{i}}-C_{k_{i}}\right), Z^{\prime}><\varepsilon / 3$. Therefore, $\iiint f_{n}$ $\delta\left(\Pi_{i=n-2}^{n}\right)^{*}<\mu_{i}^{*}\left(E_{i}-A_{i}\right), Z^{\prime}>\leq \Sigma_{k=1}^{\infty} \iiint f_{n} \delta\left(\Pi_{i=n-2}^{n}\right)^{*}<\mu_{i}^{*}\left(E_{k_{i}}-A_{k_{i}}\right), Z^{\prime}>+\iiint f_{n} \delta\left(\Pi_{i=n-2}^{n}\right.$ $)_{\Phi}<\mu_{i}^{*}\left(\cup_{k=1}^{\infty} C_{k_{i}}-\left(E_{k_{i}}-A_{k_{i}}\right)\right), Z^{\prime}>+\iiint f_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(\cup_{k=1}^{\infty} B_{k_{i}}-C_{k_{i}}\right), Z^{\prime}>\ll$ $\varepsilon / 3+\varepsilon / 3+\varepsilon / 3=\varepsilon \Rightarrow \iiint f_{n} \delta\left(\Pi_{i=n-2}^{n}\right)_{\Phi}<\mu_{i}^{*}\left(E_{i}-A_{i}\right), Z^{\prime}><\varepsilon$.

REFERENCES

1. Bruckner, B. and Thomson, S.(1997), Real Analysis (${ }^{\text {st }}$ Edition), PrenticeHall, 1-713.
2. Dorlas T.C. (2010), Reminder notes for the course on measures ontopological spaces, Dublin Institute for Advanced Studies, Dublin, Ireland,10,1-22.
3. Elias, M. and Rami, S. (2005), Real Analysis (3 $3^{\text {rd }}$ Edition), PrincetonUniversity Press, 1-48.
4. JimeneZ F. E. and SancheZ P. E.A.(2012), Lattice copies of ℓ^{2} in L^{\prime} of a Vector Measure and Strongly Orthogonal Sequences, Journalof Function spaces and applications, Hindawi Publishing Corporation,1-15.
5. SancheZ P. E.A.(2003), Vector measure orthonormal functions andbest approximation for the 4-norm, Arch.Math. 80, 177-190.
6. Yaogan Mensah (2013), Facts about the Fourier-Stieltjes transform ofvector measures on Compact Groups, International Journal of Analysisand Applications, 19-25.
