

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OFBACHELOR OF SCIENCE

COURSE CODE: STA 323

COURSE TITLE: QUALITY CONTROL AND ACCEPTANCE SAMPLING

DATE: 31/08/2022

TIME: 2:00 PM - 4:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (30 MARKS)

- a) Briefly describe the important steps in constructing an $\bar{x} chart$ [6mks]
- b) Give the three main objectives of a control chart [3mks]
- c) What are the main applications of a control chart [4mks]
- d) Briefly compare the single sampling plan and the double sampling plan [2mks]
- e) Explain briefly how you use control chart for fractional defective (p -chart) to determine whether the process is in control or not and hence show its warning and action limit on a p-chart. (take $\alpha = 0.002$ for action limit and $\alpha = 0.05$ for warning limit) [7mks]
- f) If n is large and p is moderately small and we let $\lambda=np$, obtain C-chart for the number of defectives per unit. (Take $\alpha=0.001$ for action limit and $\alpha=0.025$ for warning limit [8mks]

QUESTION TWO (20 MARKS)

- a) A company purchases large lots of items using a single sampling plan for which n=4 and c=0
 - i. Find the probability of acceptance of a lot in terms of proportion of defective items it contains.

[2mks]

- ii. What is the probability of
 - 1. A lot containing 50% defective being accepted

[2mks]

2. A lot containing 10% defective being rejected

[2mks]

- iii. Estimate the AQL (θ) corresponding to a producers risk of 5% and LTPD (θ) corresponding to consumer's risk of 10% [3mks]
- iv. If rectification is agreed on, find the expression for the average outgoing quality (AOQ) in terms of the incoming quality. Find AOQ if $\theta=0.05$ [2mks]
- v. Calculate the average total inspection (ATI) of lots of size 100 of quality $\theta = 0.05$ [3mks]
- b) What do you understand by the moving average chart? Explain clearly how you can use it to determine whether a system is out of control or not. [6mks]

QUESTION THREE (20 MARKS)

- a) suppose that the mean has shifted from μ to μ^* but σ^2 remain unchanged assuming normality (take $\alpha=0.002$)
 - i. Find the probability that the process is under control for the $\bar{x}-chart$ [4mks]
 - ii. Show that the Average Run Length function of the $\bar{x}-chart$ is given by $\frac{1}{1-P(\theta)}$. Assuming that samples taken from the process are independent, where θ is the incoming quality [3mks]
- b) Workout the O.C curve and the ARL function for S^2 -chart with upper warning limits given by $P[\sum (x_i \bar{x})^2 > k] \le 0.05$ and action is taken only if two consecutive values of S^2 fall beyond the upper warning limit (take n = 12, $\theta = \frac{\sigma^{2^*}}{\sigma}$ and $\theta \to (-\infty, 0, \infty)$ [6mks]
- c) i. Construction a sequential sampling plan from a Bernoulli population with the following values $\theta_0=0.02,\,\theta_1=0.08,\,\alpha=0.05$ and $\beta=0.1$ [4mks]
 - ii. An inspector tests 40 units from a large lot. Would he have come to a decision to reject or accept the lot if he found the 10th, 18th and 23rd unit defective? [3mks]

QUESTION FOUR (20 MARKS)

- a) Obtain a single sampling for the proportion of defectives, fixing the producer's risk $\alpha=0.01$ at $\theta_1=0.05$ and the consumer's risk $\beta=0.1$ at $\theta_2=0.1$ and hence give your conclusion **[6mks]**
- b) The data below are samples means and sample ranges for ten consecutive samples, each sample consisting of five measurements of a continuous random variable x. Assuming x is normally distributed plot $\bar{x} control\ chart$ and comment on the degree of control

Sample No.	1	2	3	4	5	6	7	8	9	10
Sample mean	136.2	137.4	136.6	139.8	136.0	135.0	136.8	142.0	137.4	136.2
Sample Range	8	6	7	6	8	7	6	19	6	7

 $a_n = 0.4299 \ for \ n = 5$

[7mks]

c) When do we use S^2 - chart? Explain clearly how you can use it to determine whether a system is out of control or not. If n=4 and $\alpha=0.02$, obtain its upper action and warning limits. [7mks]

QUESTION FIVE (20 MARKS)

a) Explain each of the following concepts

i. Average sampling numbers [ASN]

[2mks]

ii. Average outgoing quality [AOQ]

[2mks]

iii. Acceptance Quality Level [AQL]

[2mks]

iv. Lot tolerance percent defective (LTPD)

[2mks]

b) A large batch of items to be inspected using a single sampling scheme specified by the following values $n=40,\ c=2,\ \theta_1=0.02,\ {\rm and}\ \theta_2=0.1$

i. Define the operating characteristic of this sampling plan

[1mk]

ii. Find the probability of accepting a lot of quality $\theta = 0.05$

[2mks]

iii. Find the consumer's risk and the producer's risk

[3mks]

- c) A large batch of items is to be tested by using double sampling inspection scheme specified by the following numbers $n_1=20,\ n_2=40,\ c_1=0,\ c_2=c_3=2$
 - i. Obtain an expression for the probability of accepting a batch in which the true proportion of defective is θ [3mks]

ii. Obtain the value of this probability when $\theta = 0.05$ and $\theta = 0.1$

[3mks]