

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION (SBD)

COURSE CODE:

MAT 406

COURSE TITLE: FIELD THEORY

DATE: 06/09/2022

TIME: 2:00 PM - 4:00 PM

MRZBINCTIONE TO CHNOIDATES

MNWER Olyestion One and Any other TWO Questions

QUESTION ONE COMPULSORY (30 MARKS)

a) Define the following terms

i. Ring (5marks)

ii. Field extension (2marks)

ii. Field (2marks)

- b) Let $f(x) = 3x^2 + 2$, $g(x) = 4x^4 + 2x^3 + 6x^2 + 4x + 5$ in $\mathbb{Z}_7[x]$, find q(x) amd r(x) such that g(x) = f(x)q(x) + r(x) (6marks)
- c) Describe the splitting fields of the polynomial $x^2 2$ in $\mathbb{Q}[x]$ (2marks)
- d) Prove that given a field \mathbb{F} , $\mathbb{F}(\alpha, \beta) = (\mathbb{F}(\alpha))(\beta)$ (5marks)
- e) Let $p(x) = 3x^2 + x + 2$, $q(x) = 2x^3 + x^2 + 5$ in $\mathbb{Z}_6[x]$. Find their product and hence the deg(p(x), q(x)) (8marks)

QUESTION TWO (20 MARKS)

a) Define the following terms

i. Kernel (2marks)

ii. Characteristic (2marks)

iii. Minimal polynomial (2marks)

iv. Associate polynomial (2marks)

b) Find the gcd of $f(z) = z^4 + 4z^3 + 5z^2 + 4$ and $g(z) = z^2 + 5z + 4$ in $\mathbb{Z}_7(x)$ (8marks)

c) Prove that if R is an integral domain and p(x) and q(x) are non-zero elements of R[x], then deg(p(x), q(x)) = degp(x) + degq(x) (4marks)

QUESTION THREE (20 MARKS)

a) Describe the splitting fields of the following polynomial

i. $f(x) = x^4 + x^2 - 2 \text{ in } \mathbb{Q}[x]$ (3marks)

b) Discuss the minimal polynomials of the following

i. $\sqrt{2}$ over \mathbb{Q} (3marks)

ii. $\sqrt[3]{4}$ over \mathbb{Q} (3marks)

c) What is the splitting field for $f(x) = x^4 + 4$ over \mathbb{Q} (5marks)

d) Prove that for any commutative ring R with unity, the ring R[x] of polynomials over R contains a subring R' that is isomorphic to R (6marks)

QUESTION FOUR (20 MARKS)

a) Define the following terms

i. Degree of a field extension (2marks)

ii. Homomorphism (2marks)

iii. Unit (2marks)

b) Determine whether $f(x) = 2x^3 + x^2 - 5x + 2$ is irreducible over \mathbb{Z}_6 (4marks)

c) Using the rational root test, express $f(x) = 3x^3 - 4x^2 - 17x + 6$ as a product of irreducible polynomials. (10marks)

QUESTION FIVE (20 MARKS)

- a) Prove that if f(x) is a polynomial of degree 2 or 3 over a field F then f(x) is irreducible over F iff f(x) has no zeros in F (6 marks)
- b) Determine whether $f(x) = 2x^6 3x^4 + 6x^2 6x + 12$ is irreducible or not using the Einstein criterion (4marks)
- c) Prove that the characteristic of a field $\mathbb F$ is either zero or a prime p (5marks)
- d) Find the zero of the polynomial $f(x) = x^2 + 1$ in \mathbb{Z}_5 (5marks)