

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE:

SCH 441 E

COURSE TITLE: PHOTOCHEMISTRY

DURATION: 2 HOURS

DATE: 13/10/2021

TIME: 2:00-4:00PM

INSTRUCTIONS TO CANDIDATES

- Answer **QUESTION ONE** (Compulsory) and any other two (2) Questions.
- Indicate answered questions on the front cover.
- Start every question on a new page and make sure question's number is written on each page.

This paper consists of 4 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

Question 1

a) State the TWO basic laws of photochemistry.	[2mks]
b) State four differences between photochemical and thermal reactions.	[4mks]
 c) Caffeine molecules absorb radiation at wavlength of 6.039 × 10⁻⁶m. Calculate the i. frequency of this radiation; ii. energy change associated with this absorption (h = 6.626 × 10⁻³⁴Js) d) 0.25 mg of compound A with molecular weight 140 g mol⁻¹ was dissolved in 50 m the absorbance of this solution at wavelength 310 nm is 0.35, calculate the molecular weight 140 g mol⁻¹ was dissolved in 50 m 	[2mks] [2mks] L of the solvent. If
coefficient at 310 nm.	[3mks]
	[4mks]
e) Explain the difference between singlet and triplet excited states.	[4mks]
 f) State four differences between fluorescence and phosphorescence g) State three types of photochemical reactions h) Using mechanisms, discuss the photochemistry of hydrogen-chlorine reaction 	[3mks] [3 mks]
 i) Using an example and mechanism, explain Paterno-Buchi reaction Question 2 	[3 mks]
 a) State Beer Lamberts law. b) The percentage radiation transmitted by a solution containing 2- aminonicotinic ac 298 K at 320 nm is 72.4% for a solution 2x10⁻⁵ mol L⁻¹ in a one cm cell. Calculate i. the absorbance at 320 nm, 	[1mk] eid at pH 3.6 and : [2mks]
ii. the molecular extinction coefficient,	[2mks]
iii. radiation transmitted if the cell length is 5 cm	[2mks]
 c) Derive the relation depicting the concentration of each species in a solution contain and B with their absorbance measured at wavelength λ₁ and λ₂ respectively. d) Absorbance of a solution containing compounds A and B at wavelengths 310 and 	[4mks] 370 nm are 0.45
and 0.25 respectively. Calculate the concentrations of A and B from the following	
e) State three limitations of Beer Lamberts law.	[3mks]
Question 3	
a) Define clearly quantum efficiency for a photochemical reaction.	[1mk]
b) State four primary effects of absorption of radiation by atomic and molecular syst	ems [4 mks]
c) Describe how the Absorbed Intensity of radiation is measured.	[6mks]
d) In photochemical decomposition of acetone using 313 nm light, 7.57 x 10 ⁻⁶ mol of	carbon monoxide is
formed in 20 minutes. If the light absorbed corresponds to 2.41 x 10 ⁻³ J s ⁻¹ , calcula	
efficiency for the formation of carbon monoxide.	[5mks]
e) Give four reasons for low quantum yield	[4mks]

Questio 4

- Explain the physical pathways of a photochemically excited molecule using Jablonski diagram [12mks]
- a) State four requirements of a sensitizer in photosensitized reactions.

[4mks]

c) Briefly explain the Mechanism of Photosensitization and Quenching

[4mks]

Question 3

- a. State four possible type of electronic transitions in excited organic molecules giving an example of functional group in each. [6mks]
- b. Complete the following reactions by drawing the structure of the major product and provide the reaction mechanism in each. [14mks]

Question 5

- a. Write the mechanism of photo formation of ozone. [4 mks]
- a) Discuss atmospheric formation of Photochemical Smog. [12mks]
- b) Explain important effects of photochemical smog [4mks]