

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2020/2021 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER

SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF INFORMATION

TECHNOLOGY

COURSE CODE: MAT 121

COURSE TITLE: LINEAR ALGEBRA I

DATE: 30/9/2021 **TIME**: 2 PM - 4 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE COMPULSORY (30 MARKS)

a) Let
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 3 & 0 \\ 1 & 1 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 3 \\ 2 & 0 \\ 1 & -2 \end{bmatrix}$ and $C = \begin{bmatrix} 2 & -1 \\ 1 & 1 \\ 0 & 3 \end{bmatrix}$
i. Find A^{-1} .

(3marks)

Find a matrix X such that AX + B = C.

(4marks)

Is it possible to find a matrix Y such that YA + B = C? Explain.

(4marks)

b) Let $A = \begin{bmatrix} 7 & 3 \\ -2 & -5 \end{bmatrix}$ and $X = \begin{bmatrix} -4 \\ 3 \end{bmatrix}$. Compute, if possible, $X^T A^T$, $A^T X^T$, $X^T X$, and XX^T

(10marks)

c) Let $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & -1 \\ 2 & 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$. Find C if $AC = B^T$.

(5marks)

d) Find a vector X, of length 6, in the opposite direction of Y = (1, 2, -2). (4marks)

QUESTION TWO (20 MARKS)

a) Solve the system

(6marks)

$$x + y + z = 0$$

 $x + 2y + 3z = 0$
 $x + 3y + 4z = 0$
 $x + 4y + 5z = 0$.

b) Show that if $A^{-1} = A^T$, then |A| = 1 or |A| = -1

(3marks)

c) If A and B are 2 × 2 matrices with det (A) = 2 and det (B) = 5, compute $|3A^2(AB^{-1})^T|$

(5marks)

d) Let $x, y \in \mathbb{R}^n$ such that ||x|| = 2 and ||y|| = 3 and the angle between them is $\frac{\Pi}{3}$. Evaluate $\|x-y\|$ (6marks)

QUESTION THREE (20 MARKS)

a) Find the reduced row echelon form (r.r.e.f.) of the following matrix: (5marks)

b) Let A be a non-singular 4×4 matrix with $|A^{-1}| = 3$. Find

|adj(A)|

(4marks)

 $|\frac{1}{2}A^TAdj(A^{-1})|$

(6marks)

c) Find all vectors in \mathbb{R}^4 which are perpendicular to the vectors X = (1, 1, 2, 2) and Y = (2, 3, 5, 5).(5marks)

QUESTION FOUR (20 MARKS)

- a) Let \mathbf{u} and \mathbf{v} be two solutions of the non-homogenous system $A\mathbf{x} = B$. Show that $\mathbf{u} \mathbf{v}$ is a solution to the homogenous system $A\mathbf{x} = O$. (4marks)
- b) Verify that the triangle with vertices A(1, 1, 2), B(1, 2, 3), and C(3, 0, 3) is a right triangle. (5marks)
- c) Solve the following linear system

(6marks)

x +3y -z +w = 1 2x -y -2z +2w = 23x +y -z +w = 1

d) Show that if \mathbf{x} and \mathbf{y} are in \mathbb{R}^n , then $\|x + y\| \le \|x\| + \|y\|$

(5marks)

QUESTION FIVE (20 MARKS)

- a) Let \mathbf{u} and \mathbf{v} be two solutions of the homogenous system $A\mathbf{x} = O$. Show that $r\mathbf{u} + s\mathbf{v}$ (for $r, s \in \mathbb{R}$) is a solution to the same system. (4marks)
- b) Show that $U \cdot (V + W) = U \cdot V + U \cdot W$, for any vectors $U, V, W \in \mathbb{R}^n$. (4marks)
- c) Let A be a square matrix. Show that if $A = 2A^T$, then A = 0. (4marks)
- d) Find all values of a for which $X = (a^2 a, -3, -1)$ and Y = (2, a 1, 2a) are orthogonal. (5marks)
- e) Show that if C_1 and C_2 are solutions of the system $A\mathbf{x} = B$, then $4C_1 3C_2$ is also a solution of this system. (3marks)