



### KIBABII UNIVERSITY

# SUPPLIMENTARY/SPECIAL UNIVERSITY EXAMINATIONS ACADEMIC YEAR 2021/2022

### SECOND YEAR SECOND SEMESTER EXAMINATIONS

#### **BACHELOR OF SCIENCE**

**COURSE CODE: SPC 221** 

COURSE TITLE: PHYSICAL OPTICS

DATE:

28/07/2022

TIME: 8:00AM-10:00AM

#### INSTRUCTIONS TO CANDIDATES

Answer question ONE and any TWO of the remaining.

Time: 2 hours

KIBU observes ZERO tolerance to examination cheating

## QUESTION ONE (30 MARKS)

| QCDS2                                                                                                                                                                                                                                                                                                                                                                                                | (2 marks)                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| <ul> <li>a) Define Physical optics</li> <li>b) Differentiate between a transverse wave and a longitudinal wave</li> <li>c) What is a wave equation?</li> <li>d) Differentiate between coherent and incoherent sources of light</li> <li>e) What is interference?</li> <li>f) State any two uses of infrared radiation</li> <li>g) State the full name of the word LASER as used in optics</li> </ul> | (2 marks) (1 mark) (2 marks) (1 mark) (2 marks) (1 marks) (3 marks) |
| h) Write a 1-D wave equation for light waves and do                                                                                                                                                                                                                                                                                                                                                  | (2 marks)<br>(3 marks)                                              |
| j) Draw a sketch of an optical fibre snowing its basic parts                                                                                                                                                                                                                                                                                                                                         | (2 marks)<br>(2 marks)                                              |
| 1) State any two methods of polarization                                                                                                                                                                                                                                                                                                                                                             | (2 mark)                                                            |
| <ul> <li>m) What is an electromagnetic spectrum</li> <li>n) Name any three types of optical disks</li> <li>o) Give any two Maxwell's equations in Gaussian units</li> </ul>                                                                                                                                                                                                                          | (3 marks)<br>(2 marks)                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |

# **QUESTION TWO (20 MARKS)**

(12 marks) a) Write notes on the Young's Double-slit experiment b) Consider a double-slit arrangement with separation, d = 0.150mm, a viewing screen at a perpendicular distance, D = 120cm from the slits and a monochromatic light source with

What is the path difference  $\square$  for the rays from the two slits arriving at M located a wavelength,  $\lambda = 833$ nm. i) (3 marks)

a distance y = 2.00cm? Express this path difference in terms of  $\lambda$ 

Does point M correspond to a maximum, minimum or intermediate condition? ii) iii)

# **QUESTION THREE (20 MARKS)**

(2 marks) a) State what is meant by a thin film and give an example

b) White light falls on a soap film with a refractive index of 1.33 at an angle of 45°. What must be the minimum thickness of the film for the reflected rays to be yellow and a wavelength of 6.0 x 10<sup>-7</sup> m. (13 marks)

c) Discuss how microwaves are produced, their uses and their dangers

### **QUESTION FOUR (20 MARKS)**

a) What is total internal reflection?

(2 marks)

- b) Losses occurring in optical fibres are attributed to three mechanisms. Discuss the three mechanisms that the losses are attributed to. (12 marks)
- c) A step index has a numerical aperture of 0.16, a core refractive index is 1.45 and a core diameter of 90 mm, Calculate:
  - i) The acceptance angle  $\theta_c$ .

(4 marks)

ii) The refractive index of the cladding.

(2 marks)

**QUESTION FIVE (20 MARKS)** 

Discuss the Maxwell's wave equations and show that in a source-free region of space each Cartesian component of electric field **E** and magnetic field **H** satisfies the scalar

wave equation with phase velocity,  $V = \frac{C}{\sqrt{\varepsilon\mu}}$ 

(20 marks)