KIBABII UNIVERSITY # SUPPLIMENTARY/SPECIAL UNIVERSITY EXAMINATIONS ACADEMIC YEAR 2021/2022 ### SECOND YEAR SECOND SEMESTER EXAMINATIONS #### **BACHELOR OF SCIENCE** **COURSE CODE: SPC 221** COURSE TITLE: PHYSICAL OPTICS DATE: 28/07/2022 TIME: 8:00AM-10:00AM #### INSTRUCTIONS TO CANDIDATES Answer question ONE and any TWO of the remaining. Time: 2 hours KIBU observes ZERO tolerance to examination cheating ## QUESTION ONE (30 MARKS) | QCDS2 | (2 marks) | |--|---| | a) Define Physical optics b) Differentiate between a transverse wave and a longitudinal wave c) What is a wave equation? d) Differentiate between coherent and incoherent sources of light e) What is interference? f) State any two uses of infrared radiation g) State the full name of the word LASER as used in optics | (2 marks) (1 mark) (2 marks) (1 mark) (2 marks) (1 marks) (3 marks) | | h) Write a 1-D wave equation for light waves and do | (2 marks)
(3 marks) | | j) Draw a sketch of an optical fibre snowing its basic parts | (2 marks)
(2 marks) | | 1) State any two methods of polarization | (2 mark) | | m) What is an electromagnetic spectrum n) Name any three types of optical disks o) Give any two Maxwell's equations in Gaussian units | (3 marks)
(2 marks) | | | | # **QUESTION TWO (20 MARKS)** (12 marks) a) Write notes on the Young's Double-slit experiment b) Consider a double-slit arrangement with separation, d = 0.150mm, a viewing screen at a perpendicular distance, D = 120cm from the slits and a monochromatic light source with What is the path difference \square for the rays from the two slits arriving at M located a wavelength, $\lambda = 833$ nm. i) (3 marks) a distance y = 2.00cm? Express this path difference in terms of λ Does point M correspond to a maximum, minimum or intermediate condition? ii) iii) # **QUESTION THREE (20 MARKS)** (2 marks) a) State what is meant by a thin film and give an example b) White light falls on a soap film with a refractive index of 1.33 at an angle of 45°. What must be the minimum thickness of the film for the reflected rays to be yellow and a wavelength of 6.0 x 10⁻⁷ m. (13 marks) c) Discuss how microwaves are produced, their uses and their dangers ### **QUESTION FOUR (20 MARKS)** a) What is total internal reflection? (2 marks) - b) Losses occurring in optical fibres are attributed to three mechanisms. Discuss the three mechanisms that the losses are attributed to. (12 marks) - c) A step index has a numerical aperture of 0.16, a core refractive index is 1.45 and a core diameter of 90 mm, Calculate: - i) The acceptance angle θ_c . (4 marks) ii) The refractive index of the cladding. (2 marks) **QUESTION FIVE (20 MARKS)** Discuss the Maxwell's wave equations and show that in a source-free region of space each Cartesian component of electric field **E** and magnetic field **H** satisfies the scalar wave equation with phase velocity, $V = \frac{C}{\sqrt{\varepsilon\mu}}$ (20 marks)