KIBABII UNIVERSITY # UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR FIRST YEAR FIRST SEMESTER ## MAIN EXAMINATION FOR THE DEGREE OF MASTER OF BUSINESS ADMINISTRATION COURSE CODE: MBA 804 COURSE TITLE: QUANTITATIVE ANALYSIS DATE: 07/10/2022 TIME: 9.00AM - 12.00PM ## INSTRUCTION TO CANDIDATES - Answer question ONE (compulsory) and any other THREE questions - Question ONE attracts 40 marks - Time allowed is **THREE** hours - All other questions attract equal marks (20 marks) KIBU observes ZERO tolerance to examination cheating ## QUESTION ONE (40 MARKS) (a) Differentiate between the following statistical terms (2 mks each) - (i) Primary and secondary data - (ii) Discrete and continuous variable - (b) Solve the following simultaneous equations by using cramers rule $$3x + 4y = 10$$ $$2x + 7y = 11$$ (3 mks) (c) Differentiate the following functions i) $$y = (2x^2 + 4x - 3)^3$$ (2 mks) ii) $$y = \frac{x+2}{x^2-4}$$ (3 mks) (d) Find the local extremer of f(x) given that $f(x) = \frac{1}{3}x^3 - 4x$ (3 mks) - (e) The demand function of a firm is given as P = 20 Q and the average cost (AC) as $AC = 3 + \frac{10}{o}$. Determine the following - i) Marginal cost (MC) (2 mks) ii) Marginal revenue (MR) (2 mks) iii) Profit function of this firm (1 mk) (f) The data below are scores of students in DBA class of 2022 class | 42 | 68 | 84 | 64 | 55 | 93 | 61 | 50 | 2.4 | 144 | |----|----|----|-----------------|----|----|----|----|-----|-----| | 71 | 27 | 68 | 83 | 34 | 45 | | 58 | 34 | 41 | | 64 | 37 | 53 | 33 | | | 93 | 58 | 50 | 35 | | 43 | 94 | | Market Colorado | 76 | 61 | 34 | 32 | 80 | 89 | | 63 | | 44 | 81 | 64 | 33 | 58 | 68 | 25 | 65 | | 03 | 36 | 84 | 74 | 24 | 40 | 42 | 61 | 33 | 73 | - (i) Tally the data into frequency distribution table starting from 20 29 (3 mks) - (ii) Draw a stem and leaf plot to represent the data (2 mks) (iii)Calculate the mean and mode (4 mks) (g) 200 digits are chosen at random from a set of table. The frequencies are recorded as below Digit Frequency 0 18 1 19 2 3 23 21 4 5 6 8 16 25 22 20 21 15 Test the hypothesis that the digits were distributed in equal numbers in the table from which they were chosen. (Use 5% level of significance). (5 mks) (h) A milk company has four machines that fill 4 – litre jugs with milk. The quality control manager is interested in determining whether the average fill for these machines is the same. The following data represent random samples of fill machines (in litres) for 19 jugs of milk filled by the different machines. Use $\alpha = 0.01$ to test the hypothesis. Discuss the implications of your findings. (8 mks) | Machine 1 | Machine 2 | Machine 3 | Machine 4 | |-----------|-----------|-----------|-----------| | 4.05 | 3.99 | 3.97 | 4.00 | | 4.01 | 4.02 | 3.98 | 4.02 | | 4.02 | 4.01 | 3.97 | 3.99 | | 4.04 | 3.99 | 3.95 | 4.01 | | | 4.00 | 4.00 | | | | 4.00 | | | #### **QUESTION TWO (20 MARKS)** (i) What is a matrix? (1 mk) (j) Differentiate between a co factor matrix and a singular matrix (2 mks) (k) Find PQ given that $$Q = \begin{cases} 2 & 4 & 1 \\ 1 & 2 & 0 \\ 5 & 9 & 6 \end{cases} \text{ and } P = \begin{cases} 8 & 0 & 2 \\ 1 & 3 & 5 \\ 2 & 1 & 6 \end{cases}$$ (3 mks) (l) Solve the following simultaneous equations by using cramers rule $$x - 2y + 2z = 6$$ $3x + 4y - z = 3$ $4x + 6y - 5z = 0$ (6 mks) (m) Given the following Matrix; $$Z = \begin{pmatrix} 14 & 0 & 6\\ 9 & 5 & 0\\ 0 & 11 & 8 \end{pmatrix}$$ Find i) Determinant of Z (3 mks) ii) Inverse of Z (5 mks) ### **QUESTION THREE (20 MARKS)** (a) In an attempt to determine why customer service is important to managers, researchers surveyed managing directors of manufacturing plants in Uganda. One of the reasons proposed was that customer service is a means of retaining customers. On the scale of 1 to 5, with 1 being low and 5 being high, the survey respondents rated this this reason more highly than any of the others, with a mean response of 4.30. Suppose we believe that Rwanda manufacturing managers would not rate this reason as highly and conduct a hypothesis test to prove this theory. The significance level is set at 0.05. Data are gathered and the following results are obtained. Use this data to determine whether the Rwanda managers rate this reason significantly lower than the 4.30 mean ascertained in Uganda. Assume from previous studies that the population standard deviation is 0.574. (10 mks) (b) A manufacturer believes exactly 8% of its products contain at least one minor flaw. Suppose a company researcher wants to test this belief, a random sample of 200 products were inspected and 33 were found to have at least one minor flaw. Conduct the significance test at 1% level of significance. (8 mks) (c) State and briefly discuss the good qualities of an estimator (4 mks) #### QUESTION FOUR (20 MARKS). a) Discuss the properties of a normal curve (2 mks) - b) The binomial probability function can be applicable to any binomial experiment if we are satisfied that the situation demonstrates the properties of a binomial experiment. Give four properties that are exhibited by a binomial experiment (2 mks) - c) The total cost X of completing a project is assumed to follow a normal distribution with mean \$ 850000 and a standard deviation of \$ 170000. The revenue, R, promised to the contractor is \$ 1000000. - (i) The contract will be profitable if the revenue exceeds total cost, what is the probability that the contract will be profitable to the contractor? (5 mks) - (ii) Suppose the contractor has the opportunity to renegotiate the contract. What value of R should the contractor strive for in order to have 0.99 probability of making a profit? (5 mks) - d) It is known that all items produced by a certain machine will be defective with probability 0.1 independently of each other. What is the probability that in a sample of three items at most one will be defective (3 mks) - e) The Registrar's office receives on average seven inquiries per day in relation to admissions and the distribution can be assumed to be Poisson. Estimate the probability that on one particular day, the office will three inquiries (3 mks) #### **QUESTION FIVE (20 MARKS)** (a) Differentiate between correlation and regression analysis (2 mks) (b) State four objectives of data analysis (2 mks) (c) The table below shows the average monthly price of super petrol for the last six months beginning from January 2022 in shillings. Using the data, determine the Regression equation and make a prediction for the month of July. Year 1 2 3 4 5 6 Sales 3900 4300 5000 4700 5500 5900 (6 mks) (b) In the following set of data, y represents the number of annual claims for damage received by an insurance company (in thousands) and x represents the annual rainfall (in centimeters) over a period of 10 years | X | 0.0 | 2.5 | 2.2 | 0.0 | 19.5 | 2.5 | 2.0 | 2.0 | 3.1 | 0.0 | |---|-----|-----|-----|-----|------|-----|-----|-----|-----|-----| | Y | 110 | 250 | 250 | 150 | 450 | 200 | 210 | 230 | 290 | 100 | Required: Compute the moment correlation coefficient and test whether the correlation between sales and advertising costs is significant at 95% confidence level (10 mks) A(z) is the integral of the standardized normal distribution from $-\infty$ to z (in other words, the area under the curve to the left of z). It gives the probability of a normal random variable not being more than z standard deviations above its mean. Values of z of particular importance: | = | A(z) | | |-------|--------|---------------------------------| | 1.645 | 0.9500 | Lower limit of right 5% tail | | 1.960 | 0.9750 | Lower limit of right 2.5% tail | | 2.326 | 0.9900 | Lower limit of right 1% tail | | 2.576 | 0.9950 | Lower limit of right 0.5% tail | | 3.090 | 0.9990 | Lower limit of right 0.1% tail | | 3.291 | 0.9995 | Lower limit of right 0.05% tail | | = | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 | |-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------------| | 0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 | | 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 | | 0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 | | 0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 | | 0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 | | 0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 | | 0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 | | 0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 | | 0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 | | 0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 | | 1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 | | 1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 | | 1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 | | 1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 | | 1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 | | 1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9319 | | 1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 | | 1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 | | 1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9033 | | 1.9 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 | | 2.0 | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 | | 2.1 | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 | | 2.2 | 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890 | | 2.3 | 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9890 | | 2.4 | 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9916 | | 2.5 | 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | | | 2.6 | 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9951 | 0.9952 | | 2.7 | 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9963 | 0.9964 0.9974 | | .8 | 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | | | .9 | 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | | 0.9981 | | .0 | 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9986 | 0.9986 | | .1 | 0.9990 | 0.9991 | 0.9991 | 0.9991 | 0.9992 | 0.9992 | 0.9989 | 0.9989 | 0.9990 | 0.9990 | | .2 | 0.9993 | 0.9993 | 0.9994 | 0.9994 | 0.9994 | 0.9992 | 0.9992 | 0.9992 | 0.9993 | 0.9993 | | .3 | 0.9995 | 0.9995 | 0.9995 | 0.9996 | 0.9996 | 0.9994 | 0.9994 | 0.9995 | 0.9995 | 0.9995 | ### F Distribution: Critical Values of F (5% significance level) | v_1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 14 | 16 | 18 | 20 | |-------|--------|--------|------|------|--------|------|-------|--------|--------|--------|--------|--------|--------|--------|--------| | V2 | | | | | | | | | | | | | | | | | 1 | 161.45 | 199.50 | | | 230.16 | | | 238.88 | 240.54 | 241.88 | 243.91 | 245.36 | 246.46 | 247.32 | 248.01 | | 2 | 18.51 | 19.00 | | | 19.30 | | 19.35 | 19.37 | 19.38 | 19.40 | 19.41 | 19.42 | 19.43 | 19.44 | 19.45 | | 3 | 10.13 | 9.55 | 9.28 | 9.12 | 9.01 | 8.94 | 8.89 | 8.85 | 8.81 | 8.79 | 8.74 | 8.71 | 8.69 | 8.67 | 8.66 | | 4 | 7.71 | 6.94 | 6.59 | 6.39 | 6.26 | 6.16 | 6.09 | 6.04 | 6.00 | 5.96 | 5.91 | 5.87 | 5.84 | 5.82 | 5.80 | | 5 | 6.61 | 5.79 | 5.41 | 5.19 | 5.05 | 4.95 | 4.88 | 4.82 | 4.77 | 4.74 | 4.68 | 4.64 | 4.60 | 4.58 | 4.56 | | 6 | 5.99 | 5.14 | 4.76 | 4.53 | 4.39 | 4.28 | 4.21 | 4.15 | 4.10 | 4.06 | 4.00 | 3.96 | 3.92 | 3.90 | 3.87 | | 7 | 5.59 | 4.74 | 4.35 | 4.12 | 3.97 | 3.87 | 3.79 | 3.73 | 3.68 | 3.64 | 3.57 | 3.53 | 3.49 | 3.47 | 3.44 | | 8 | 5.32 | 4.46 | 4.07 | 3.84 | 3.69 | 3.58 | 3.50 | 3.44 | 3.39 | 3.35 | 3.28 | 3.24 | 3.20 | 3.17 | 3.15 | | 9 | 5.12 | 4.26 | 3.86 | 3.63 | 3.48 | 3.37 | 3.29 | 3.23 | 3.18 | 3.14 | 3.07 | 3.03 | 2.99 | 2.96 | 2.94 | | 10 | 4.96 | 4.10 | 3.71 | 3.48 | 3.33 | 3.22 | 3.14 | 3.07 | 3.02 | 2.98 | 2.91 | 2.86 | 2.83 | 2.80 | 2.77 | | 11 | 4.84 | 3.98 | 3:59 | 3.36 | 3.20 | 3.09 | 3.01 | 2.95 | 2.90 | 2.85 | 2.79 | 2.74 | 2.70 | 2.67 | 2.65 | | 12 | 4.75 | 3.89 | 3.49 | 3.26 | 3.11 | 3.00 | 2.91 | 2.85 | 2.80 | 2.75 | 2.69 | 2.64 | 2.60 | 2.57 | 2.54 | | 13 | 4.67 | 3.81 | 3.41 | 3.18 | 3.03 | 2.92 | 2.83 | 2.77 | 2.71 | 2.67 | 2.60 | 2.55 | 2.51 | 2.48 | 2.46 | | 14 | 4.60 | 3.74 | 3.34 | 3.11 | 2.96 | 2.85 | 2.76 | 2.70 | 2.65 | 2.60 | 2.53 | 2.48 | 2.44 | 2.41 | 2.39 | | 15 | 4.54 | 3.68 | 3.29 | 3.06 | 2.90 | 2.79 | 2.71 | 2.64 | 2.59 | 2.54 | 2.48 | 2.42 | 2.38 | 2.35 | 2.33 | | 16 | 4.49 | 3.63 | 3.24 | 3.01 | 2.85 | 2.74 | 2.66 | 2.59 | 2.54 | 2.49 | 2.42 | 2.37 | 2.33 | 2.30 | 2.28 | | 17 | 4.45 | 3.59 | 3.20 | 2.96 | 2.81 | 2.70 | 2.61 | 2.55 | 2.49 | 2.45 | 2.38 | 2.33 | 2.29 | 2.26 | 2.23 | | 18 | 4.41 | 3.55 | 3.16 | 2.93 | 2.77 | 2.66 | 2.58 | 2.51 | 2.46 | 2.41 | 2.34 | 2.29 | 2.25 | 2.22 | 2.19 | | 19 | 4.38 | 3.52 | 3.13 | 2.90 | 2.74 | 2.63 | 2.54 | 2.48 | 2.42 | 2.38 | 2.31 | 2.26 | 2.21 | 2.18 | 2.16 | | 20 | 4.35 | 3.49 | 3.10 | 2.87 | 2.71 | 2.60 | 2.51 | 2.45 | 2.39 | 2.35 | 2.28 | 2.22 | 2.18 | 2.15 | 2.12 | | 21 | 4.32 | 3.47 | 3.07 | 2.84 | 2.68 | 2.57 | 2.49 | 2.42 | 2.37 | 2.32 | 2.25 | 2.20 | 2.16 | 2.12 | 2.10 | | 22 | 4.30 | 3.44 | 3.05 | 2.82 | 2.66 | 2.55 | 2.46 | 2.40 | 2.34 | 2.30 | 2.23 | 2.17 | 2.13 | 2.10 | 2.07 | | 23 | 4.28 | 3.42 | 3.03 | 2.80 | 2.64 | 2.53 | 2.44 | 2.37 | 2.32 | 2.27 | 2.20 | 2.15 | 2.11 | 2.08 | 2.05 | | 24 | 4.26 | 3.40 | 3.01 | 2.78 | 2.62 | 2.51 | 2.42 | 2.36 | 2.30 | 2.25 | 2.18 | 2.13 | 2.09 | 2.05 | 2.03 | | 25 | 4.24 | 3.39 | 2.99 | 2.76 | 2.60 | 2.49 | 2.40 | 2.34 | 2.28 | 2.24 | 2.16 | 2.11 | 2.07 | 2.04 | 2.01 | | 26 | 4.22 | 3.37 | 2.98 | 2.74 | 2.59 | 2.47 | 2.39 | 2.32 | 2.27 | 2.22 | 2.15 | 2.09 | 2.05 | 2.02 | 1.99 | | 27 | 4.21 | 3.35 | 2.96 | 2.73 | 2.57 | 2.46 | 2.37 | 2.31 | 2.25 | 2.20 | 2.13 | 2.08 | 2.04 | 2.00 | 1.97 | | 28 | 4.20 | 3.34 | 2.95 | 2.71 | 2.56 | 2.45 | 2.36 | 2.29 | 2.24 | 2.19 | 2.12 | 2.06 | 2.02 | 1.99 | 1.96 | | 29 | 4.18 | 3.33 | 2.93 | 2.70 | 2.55 | 2.43 | 2.35 | 2.28 | 2.22 | 2.18 | 2.10 | 2.05 | 2.01 | 1.97 | 1.94 | | 30 | 4.17 | 3.32 | 2.92 | 2.69 | 2.53 | 2.42 | 2.33 | 2.27 | 2.21 | 2.16 | 2.09 | 2.04 | 1.99 | 1.96 | 1.93 | | 35 | 4.12 | 3.27 | 2.87 | 2.64 | 2.49 | 2.37 | 2.29 | 2.22 | 2.16 | 2.11 | 2.04 | 1.99 | 1.94 | 1.91 | 1.88 | | 40 | 4.08 | 3.23 | 2.84 | 2.61 | 2.45 | 2.34 | 2.25 | 2.18 | 2.12 | 2.08 | 2.00 | 1.95 | 1.90 | 1.87 | 1.84 | | | | | | | | | | | | | | | | | | ### F Distribution: Critical Values of F (1% significance level) | v_1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 14 | 16 | 18 | 20 | |-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | v_2 | | | | | | | | | | | | | | | | | 1 | 4052.18 | 4999.50 | 5403.35 | 5624.58 | 5763.65 | 5858.99 | 5928.36 | 5981.07 | 6022.47 | 6055.85 | 6106.32 | 6142.67 | 6170.10 | 6191.53 | 6208.73 | | 2 | 98.50 | 99.00 | 99.17 | 99.25 | 99.30 | 99.33 | 99.36 | 99.37 | 99.39 | 99.40 | 99.42 | 99.43 | 99.44 | 99.44 | 99.45 | | 3 | 34.12 | 30.82 | 29.46 | 28.71 | 28.24 | 27.91 | 27.67 | 27.49 | 27.35 | 27.23 | 27.05 | 26.92 | 26.83 | 26.75 | 26.69 | | 4 | 21.20 | 18.00 | 16.69 | 15.98 | 15.52 | 15.21 | 14.98 | 14.80 | 14.66 | 14.55 | 14.37 | 14.25 | 14.15 | 14.08 | 14.02 | | 5 | 16.26 | 13.27 | 12.06 | 11.39 | 10.97 | 10.67 | 10.46 | 10.29 | 10.16 | 10.05 | 9.89 | 9.77 | 9.68 | 9.61 | 9.55 | | 6 | 13.75 | 10.92 | 9.78 | 9.15 | 8.75 | 8.47 | 8.26 | 8.10 | 7.98 | 7.87 | 7.72 | 7.60 | 7.52 | 7.45 | 7.40 | | 7 | 12.25 | 9.55 | 8.45 | 7.85 | 7.46 | 7.19 | 6.99 | 6.84 | 6.72 | 6.62 | 6.47 | 6.36 | 6.28 | 6.21 | 6.16 | | 8 | 11.26 | 8.65 | 7.59 | 7.01 | 6.63 | 6.37 | 6.18 | 6.03 | 5.91 | 5.81 | 5.67 | 5.56 | 5.48 | 5.41 | 5.36 | | 9 | 10.56 | 8.02 | 6.99 | 6.42 | 6.06 | 5.80 | 5.61 | 5.47 | 5.35 | 5.26 | 5.11 | 5.01 | 4.92 | 4.86 | 4.81 | | 10 | 10.04 | 7.56 | 6.55 | 5.99 | 5.64 | 5.39 | 5.20 | 5.06 | 4.94 | 4.85 | 4.71 | 4.60 | 4.52 | 4.46 | 4.41 | | 11 | 9.65 | 7.21 | 6.22 | 5.67 | 5.32 | 5.07 | 4.89 | 4.74 | 4.63 | 4.54 | 4.40 | 4.29 | 4.21 | 4.15 | 4.10 | | 12 | 9.33 | 6.93 | 5.95 | 5.41 | 5.06 | 4.82 | 4.64 | 4.50 | 4.39 | 4.30 | 4.16 | 4.05 | 3.97 | 3.91 | 3.86 | | 13 | 9.07 | 6.70 | 5.74 | 5.21 | 4.86 | 4.62 | 4.44 | 4.30 | 4.19 | 4.10 | 3.96 | 3.86 | 3.78 | 3.72 | 3.66 | | 14 | 8.86 | 6.51 | 5.56 | 5.04 | 4.69 | 4.46 | 4.28 | 4.14 | 4.03 | 3.94 | 3.80 | 3.70 | 3.62 | 3.56 | 3.51 | | 15 | 8.68 | 6.36 | 5.42 | 4.89 | 4.56 | 4.32 | 4.14 | 4.00 | 3.89 | 3.80 | 3.67 | 3.56 | 3.49 | 3.42 | 3.37 | | 16 | 8.53 | 6.23 | 5.29 | 4.77 | 4.44 | 4.20 | 4.03 | 3.89 | 3.78 | 3.69 | 3.55 | 3.45 | 3.37 | 3.31 | 3.26 | | 17 | 8.40 | 6.11 | 5.18 | 4.67 | 4.34 | 4.10 | 3.93 | 3.79 | 3.68 | 3.59 | 3.46 | 3.35 | 3.27 | 3.21 | 3.16 | | 18 | 8.29 | 6.01 | 5.09 | 4.58 | 4.25 | 4.01 | 3.84 | 3.71 | 3.60 | 3.51 | 3.37 | 3.27 | 3.19 | 3.13 | 3.08 | | 19 | 8.18 | 5.93 | 5.01 | 4.50 | 4.17 | 3.94 | 3.77 | 3.63 | 3.52 | 3.43 | 3.30 | 3.19 | 3.12 | 3.05 | 3.00 | | 20 | 8.10 | 5.85 | 4.94 | 4.43 | 4.10 | 3.87 | 3.70 | 3.56 | 3.46 | 3.37 | 3.23 | 3.13 | 3.05 | 2.99 | 2.94 | | 21 | 8.02 | 5.78 | 4.87 | 4.37 | 4.04 | 3.81 | 3.64 | 3.51 | 3.40 | 3.31 | 3.17 | 3.07 | 2.99 | 2.93 | 2.88 | | 22 | 7.95 | 5.72 | 4.82 | 4.31 | 3.99 | 3.76 | 3.59 | 3.45 | 3.35 | 3.26 | 3.12 | 3.02 | 2.94 | 2.88 | 2.83 | | 23 | 7.88 | 5.66 | 4.76 | 4.26 | 3.94 | 3.71 | 3.54 | 3.41 | 3.30 | 3.21 | 3.07 | 2.97 | 2.89 | 2.83 | 2.78 | | 24 | 7.82 | 5.61 | 4.72 | 4.22 | 3.90 | 3.67 | 3.50 | 3.36 | 3.26 | 3.17 | 3.03 | 2.93 | 2.85 | 2.79 | 2.74 | | 25 | 7.77 | 5.57 | 4.68 | 4.18 | 3.85 | 3.63 | 3.46 | 3.32 | 3.22 | 3.13 | 2,99 | 2.89 | 2.81 | 2.75 | 2.70 | | 26 | 7.72 | 5.53 | 4.64 | 4.14 | 3.82 | 3.59 | 3.42 | 3.29 | 3.18 | 3.09 | 2.96 | 2.86 | 2.78 | 2.72 | 2.66 | | 27 | 7.68 | 5.49 | 4.60 | 4.11 | 3.78 | 3.56 | 3.39 | 3.26 | 3.15 | 3.06 | 2.93 | 2.82 | 2.75 | 2.68 | 2.63 | | 28 | 7.64 | 5.45 | 4.57 | 4.07 | 3.75 | 3.53 | 3.36 | 3.23 | 3.12 | 3.03 | 2.90 | 2.79 | 2.72 | 2.65 | 2.60 | | 29 | 7.60 | 5.42 | 4.54 | 4.04 | 3.73 | 3.50 | 3.33 | 3.20 | 3.09 | 3.00 | 2.87 | 2.77 | 2.69 | 2.63 | 2.57 | | 30 | 7.56 | 5.39 | 4.51 | 4.02 | 3.70 | 3.47 | 3.30 | 3.17 | 3.07 | 2.98 | 2.84 | 2.74 | 2.66 | 2.60 | 2.55 | # χ^2 (Chi-Squared) Distribution: Critical Values of χ^2 #### Significance level | Degrees of
freedom | 5% | 1% | 0.1% | |-----------------------|--------|--------|--------| | 1 | 3.841 | 6.635 | 10.828 | | 2 | 5.991 | 9.210 | 13.816 | | 3 | 7.815 | 11.345 | 16.266 | | 4 | 9.488 | 13.277 | 18.467 | | 5 | 11.070 | 15.086 | 20.515 | | 6 | 12.592 | 16.812 | 22.458 | | 7 | 14.067 | 18.475 | 24.322 | | 8 | 15.507 | 20.090 | 26,124 | | 9 | 16.919 | 21.666 | 27.877 | | 10 | 18.307 | 23.209 | 29.588 |