

(Knowledge for Development) KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF MASTER OF SCIENCE IN STATISTICS

COURSE CODE:

STA 814

COURSE TITLE:

THEORY OF NON-PARAMETRIC STATISTICS

DATE:

05/10/2022

TIME: 2 PM -4 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other two

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

(a). Differentiate between parametric and non-parametric statistical inference approaches.

b). The observed values of a random sample of size k from a continuous distribution are

10.2 14.1 9.2 11.3 7.2 9.8 6.5 11.8 8.7 10.8

 H_1 : M > 8 at 5% level of significance using the (8 marks) Test Ho: M = 8 Vs

- Sign test i.
- Signed rank test. ii.

c).Let X_1, X_2, \ldots, X_n denote a random sample from a continuous population with cumulative distribution function, $F_X(x)$. Show that if $X_{(1)} < \dots < X_{(n)}$ denote the n order statistics from the population then the joint probability density function of the n order statistics

$$f(y_1, y_2, ..., y_n) = n! \pi_{j=1}^n f_x(y_j)$$
, $0 < y_1 < ... < y_n$
.where $f_x(x) \frac{d}{dx} F_x(x)$ (10 marks)

(d). State and prove the probability integral transform theorem.

(6 marks)

QUESTION TWO (20 MARKS)

a) Consider the following data on an empirical distribution function $S_n(\boldsymbol{x})$ and a hypothesized distribution $F_0(x)$ on 25 subjects and selected values of a random variable X.

X=x	1	4	10	25	60	80	100
$nS_n(x)$	4	10	13	17	21	24	25
	2	5	9	16	17	19	25
$nF_0(x)$	2	5			_	0/11	- f

Use the Kolmogorov-Smirnov two sided test procedure to test at 5% level of significance the hypothesis H_0 $F(x) = F_0(x)$ against H_a : $F(x) \neq F_0(x)$

b) Suppose (X_1, Y_1) , (X_2, Y_2) ,...., (X_n, Y_n) is a random sample from a Continuous bivariate distribution with the distribution function F(x,y).

Let $D_i = Y_i - X_i$; $i = 1, 2, \dots, n$. Assuming that D_1, D_2, \dots, n .

.....,D_n is a random sample of difference from F(x,y), construct a $100(1-\alpha)\%$ confidence interval for the unknown median of differences M_D based on the statistic T⁺.

QUESTION THREE (20 MARKS)

(a) In an effort to determine immunoglobulin D(igD)levels of a certain ethnic group ,a large num ber of the blood samples representing both sexes for 12 year olds were taken .The following sam

ple data gives the igD levels (inmg/100ml)

Mal	9.3	0.0	12.2	8.1	5.7	6.8	3.6	9.4	8.5	7.3	9.7	
e							7.0	7.4	2.5	2.3	7.5	7.0
Fem ale	7.1	0.0	5.9	7.6	2.8	5.8	7.2	7.4	3.3	3.3	7.5	7.0

Use the large sample Wilcoxon rank sum test with the significance level α =0.01 to test the hypoth esis that there is no differences between the sexes in the median level of the igD. (8 marks)

(b) Find the significance difference between treatment A and B using Mann-Whitney statistics

Treatment	3	4	2	6	2	5
A Treatment	9	7	5	10	6	8
В						(6 marks)

(c) (n=2), uniform population . let X_1 and X_2 be independent U(0,1) random variables. Find the (6 marks) joint t probability density function of $X_1=\min(X_1,X_2)$ and $X_2=\max(X_1,X_2)$.

QUESTION FOUR (20 MARKS)

(a). To test the null hypotheses $H_0:M=M_0$, where M is the median of some continuous distribution function F(x). Let $D_i = X_i - M_0$, $i = 1, 2, \dots, n$ where M₀ is a specified value and X₁,,,,,X_n is a random sample from the population. Consider the random variable.

$$T_n^+ = \sum_{i=1}^N z_i \{ rank(|D_i|) \}$$

$$z_i = \begin{cases} 1, & if D_i > 0 \\ 0, & if D_i < 0 \end{cases}$$
 where

- (i). Derive the exact probability mass function (pmf) of T_4^+ , And using the pmf, obtain
- (ii). Var (T_4^+).
- (iii). Exact $\alpha = 0.125$ level of significance for testing H₀ against H_a: not H₀

(15 marks)

(b). Consider the random variables X and Y with median mx and my respectively. If

 X_1, X_2, \dots, X_n and Y_1, Y_2, \dots, Y_n are random samples from X and Y

respectively, explain how you would use the ordinary sign test to test

$$H_0:M_x=M_y$$

$$v/s$$
 $H_a: M_x \neq M_y$

Assume there is a possibility of "zeros".

(9 marks)

QUESTION FIVE (20 MARKS)

a) Define order statistics

(3 marks)

b) Explain the importance of order statistics

(6 marks)

c) Let X_1 , X_2 , X_3 , X_4 and X_5 be a random sample from a population from a distribution with pdf

 $f(x) = 2x \qquad 0 \le x \le 1$ Let $Y_1 \le Y_2 \le Y_3 \le Y_4 \le Y_5$ denote the associated order statistics

(i) find
$$P(Y_4 < \frac{1}{2})$$

(4 marks)

(ii) find the CDF of
$$Y_4 = P(Y_4 \le y)$$
 $0 \le y \le 1$)

(4 marks)

(iii) find the pdf of Y₄

(3 marks)