

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

FORTH YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE:

MAP 422

COURSE TITLE:

MEASURE THEORY AND INTEGRATION

DATE: 09/09/2022

TIME: 2:00 PM - 4:00 AM

Answer question ONE and any other TWO Questions

TIME: 2 Hours

QUESTION ONE (20 MARKS)

- a) Define the following terms
 - i. Union
 - ii. Intersection
 - iii. Difference
 - iv. Symmetric difference
 - v. Family of elements
- b) Given R is a ring of subsets of a set X, show that the monotone ring generated by R coincides with the ring generated by R; M(R) = G(R)
- c) State the Lemma on Monotone classes (LCM)

QUESTION TWO (20 MARKS)

- a) Define the following terms
 - i. Set function
 - ii. Measure
 - iii. Finite set function
 - iv. Positive set function
- b) Given μ is a measure on a ring R, show that
 - i. μ is monotonic, that is $\mu(E) \le \mu(F)$ whenever E and F are sets in R such that $E \subset F$
 - ii. μ is conditionally subtractive that is $\mu(E F) \le \mu(F) \mu(E)$ whenever E and F are sets in R such that $E \subset F$ and $\mu(E)$ is finite
 - iii. μ is finitely additive that is if $E_1, ..., E_n$ are mutually disjoint sets in R, then $\mu(\bigcup_{i=1}^n E_i) = \sum_{i=1}^n \mu(E_i)$
 - iv. μ is countably additive that is, if E_k is a sequence of mutually disjoint sets in R such that $\bigcup_{1}^{\infty} E_k$ is in R, then $\mu(\bigcup_{1}^{\infty} E_k) = \sum_{1}^{\infty} \mu(E_k)$ in the sense that the LUB of the (increasing) sequence of partial sums $\sum_{1}^{\infty} \mu(E_k)$ is equal to $\mu(\bigcup_{1}^{\infty} E_k)$

QUESTION THREE (20 MARKS)

- a) Show that if v is an outer measure, the class M of v-measurable sets is a ring
- b) State the unique Extension Theorem (UET)
- c) Show that if E is a set in R, and $E = \bigcup_{1}^{r} [a_i b_i] = \bigcup_{1}^{s} [c_j d_j]$ are two representations of E, then $\sum_{1}^{r} (b_i a_i) = \sum_{1}^{s} (d_j c_j)$