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Abstract

We develop a fishery model with price dependent harvesting by for-
mulating a system of three differential equations describing its dynam-
ics. Assuming that the price of the harvested fish on the market evolves
relatively faster than the evolution of the fish stock and the fishing effort,
we apply approximate aggregation to reduce the system of equations
from three to two. From the stability analysis of the aggregated model,
we show the co-existence of three strictly positive equilibria where two
are stable and are separated by a saddle. The two stable equilibtia rep-
resent two kinds of fishery namey; an over-exploited fishery where the
fishery supports a large economic activity but risks extinction and an
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under-exploited fishery where the stock is maintained at a large level far
from extinction but the fishery only supports a small economic activity.

Mathematics Subject Classification: 93A30, 92B05, 34C23
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1 Introduction

Sustainable harvesting of renewable resources has been widely considered in
bioeconomics in an attempt to have sustainable resources exploitation, see for
instance [3], [4] and [12]. A fishery is one of these resource and fishery dynamics
has been studied with earlier models considering population growth described
by the Verhulst’s growth model without harvesting. When we take harvesting
into consideration, the factors that affect the harvesting effort become crucial
in any meaningfull model. The basic harvesting effort drive in a fishery is the
market price of the fish that is necessarily a function of supply and demand.
Thus the most feasible time continous model describing the relationship be-
tween the three main variables and parameters to study the fishery dynamics
with price dependent harvesting is of the form

no= f(n) = hn, B),
= B(ph(n, E) — cE), (1)
p = ap(D(p) — h(n, E)),

where n := n(t) and E := E(t) represents the population of fish and fishing
effort respectively at time t. The variable p := p(t) is the price of the stock of
fish at any time ¢. The constant [ is a positive adjustment coefficient depending
on the fishery and the landed fish price p per unit of the landed stock at time
t. The constant « is referred to as the price adjustment parameter.

The first equation of Equation(1) describes the rate of growth of the fish
resource which is harvested. The function

n

fn) =rn(1 =), )

is the logistic growth rate function, where r is the intrinsic growth rate of the
fish while k is the carrying capacity and reflects the level to which the fish
will grow if there is no harvesting. The function h(n, E) is the harvesting
function that depends on the fish resource and the fishing effort and hence
mimicks predation, see for instance [10]. Thus h(n, E) = g(n, E)E, where the
function g(n, E) is the amount of fish captured per unit of fishing effort. A
suitable function, commonly used in fishery management models, tha takes into
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account mortality and harvesting effort as control variables to stock growth
is the schaefer function, see for instance Arne Eide et al, [1]. We thus choose
g(n, E) = gqn, where q is a positive constant referred to as capturability. Hence

h(n,E) = gnkE. (3)

The second equation of Equation (1) describes the evolution of the fishing
effort that depends on the difference between the benefit and the cost of fishing
effort. The plausible relation describing the dynamics of harvesting is

E o (benefit - cost).

The total benefit is the product of the market price p and the total catch
h(n, E), while the total cost is the product of the cost per unit of fishing ¢ and
the fishing effort £. Thus with h(n, E') given in Equation(3), we have

E = BE(pgn — c). (4)

The third equation in Equation (1) describes the variation of market price p,
that depends on the demand, the supply of the fish and, the price dynamics.
We assume that relative variations in the market price are governed by a simple
balance between demand and supply of fish. This relation can be represented
by

p = ap(D(p) — S(p)),

where D(p) and S(p) denote the demand and supply functions of the fish
respectively, see for instance [6]. The arqument of the demand schedule is
taken as p(t) in keeping with the simplest assumption that consumers base
all buying decisions on the current market price. A linear demand function
dependent on the market price p is

D(p) = A —p(t),

where A is a positive constant parameter representing the limit threshold of
the market price, see for instance [5], is chosen as a demand function, such that
the demand decreases linearly with increasing price. This suits price sensitive
resources in which the marginal cost is unit and their consumption depend
on the availability of their substitutes. The arqument of the supply schedule
is such that S(p) is dependent on the captured fish. Therefore, S(p) = gnFE.
With the functions of S(p) and D(p) thus defined, the equation in market price
becomes

p=ap(A—p—qnk). (5)

Equation (5), has market price evolving nonlinearly depending on the price
dynamics and the difference between supply and demand. The existence of
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price dynamics is occasioned by the price fluctuations on the market due to
market forces caused by supply variations. This accounts for the nonlinearity
in the price equation. This variation is more realistic than linear price variation
considered in [7] and Auger et al, [2].

Equations (2), (4), and (5) make the simple time continous model in
Equation(1) to become

no= rn(l—%)—an,

= BE(pqn — c), (6)
p = ap(A—p—qnk).

The analysis of the system of equations in (6) is the core concern of this paper.

We now outline how we shall study the model in Equation (6). In §2, we
simplify the model by aggregating variables to reduce its dimension then obtain
the equilibrium points of the reduced system and analyse their local stability in
order to study its long term solutions. §3 is dedicated to Bifurcation analysis
while the §4 and §5 are devoted to physical interpretation of the results and
the conclusion respectively.

2 Long Term Solutions

The rate of change of p in (6) is comparatively faster than the evolution of the
fish stock and fishing effort, this is due to the day to day variation of market
price as the suppliers adjust to market forces and fishery conditions in order
to recoup their investment and make profit. We reduce the model in Equation
(6), to a two dimensional system by an appropriate aggregation of variables,
see for instance [11] for more on simplification and scaling and Auger et.al, [2].

In our aggregation we replace p in the harvesting equation with its non
trivial equilibrium values, p := p* which solves

p=ap(A—p—qnk)=0, (7)

to obtain p* = A — gnE. Using (7) and p* in Equation(6), we obtain

o= n(r(l- 1) —qE),

E = BE(—c+ qn(A—qnE)), (8)

a system of two equations that is relatively easy to analyse. We take § =1 in
(8), which is a maximum value in the range 0 < 5 < 1 and may occur when
the environmental conditions and harvesting are favourable for stock growth
in the fishery.
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Local Stability Analysis . In Equation(8), the n nullclines are: n = 0 and
7(1—%)—qE = 0 while the F nullclines are: £ = 0 and —c+qn(A—qgnkE) = 0.
The equilibrium points are the intersection of £ and n nullclines; that is,
Ey :=(0,0), By := (k,0) and E; := (n*, E*) that is a solution (n*, E*) of

n B 1

E(n)=-(1-2), E(n)=—(A-—). (9)

Cqn qn

Solving for ¢ in Equation (9), we obtain a cubic equation for the parameter ¢
as a function of the equilibrium fish stock ¢(n*) given by

c(n®) = %n*3 —rqn™® + Aqn”*. (10)

Solving Equation (10) with different values of k, we obtain one or three equi-
librium values n*.

It can easily be shown that Ej is a saddle point. The point Ej, is stable if
k< Aiq and is a saddle if & > Aiq.

Linearization of Equation(8) at the equilibrium point s, gives the Jacobian
matrix

. “ _ _in* _qn*
J(?’L aE ) (qE*(A—Qqn*E*) —QQTL*ZE*) .

The trace, tr(.J), and the determinant, det(.J), of J(n*, E*) are determined to
establish the nature of its eigenvalues. They are given thus

tr(J) := —%n* —¢*n**E* <0 and det(J) := q2n*E*(%n*2 +A—2gn"E").

Using the first equation in Equation (9); that is, £* = 2(1 — %), we obtain
2% % * *) .__ 3r, %2 * : 2% % 3

det(J) = ¢*n*E*y(n*), where i(n*) := 9tn* — 2rn* + A. Since ¢°n*E”* is
positive, the sign of det(J) will consequently depend on ¥ (n*).

Since ¢/(n) = ¢ (n), where the prime indicates differentiation with respect
to n, we study the sign of ¥(n*) by analysing ¢(n*) defined in Equation (10).
First and foremost, let us consider Figure 1, not drawn to scale, that shows
how ¢(n*) depends on k. The function ¢(n*) is plotted against n for values of
k=234 and 5.
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c(n*)

Figure 1: The graph of the function ¢(n*) for four values of k.
Figure 1 enables us to see how the number of zeroes vary with k£ and hence sim-
plify the analysis of ¢/(n*). There are special points of ¢(n*) where two zeroes
of ¢(n*) merge, this happens when ¢/(n*) = 3%”*2 —2rgqn* + Aq = q¢p(n*) = 0.
The solutions n* for ¢/(n*) = 0 are

k A
n{,2:§<1i 1—?;—). (11)

r

If r < 34, then ¢/(n*) is positive and ¢(n*) is monotonic increasing with com-
plex roots. If r > 34 then there are two real zero’s for ¢/(n*). If r = 32 the two
real zero’s coincide. Further analysis contained in the following propositions
and their proofs distinguishes two different cases.

Proposition 2.1. For 0 <r < % and k > A—Cq , B is a saddle point and Fs
18 a positive stable equilibrium point

Proof. Proposition 2.1.

If 0 <r < 3 in (11), the sign of ¢/(n*) which is the same as the sign of
¥ (n*) does not change and is always positive. This implies that det(.J) > 0.
Moreover, c//(n*) = 6—]:‘171* — 2rq implies that n* = % is a point of inflection.
We have ¢(k) = gAk but since c is strictly increasing and may take posi-
tive or negative values depending on k, we consider ¢(k) = gAk — ¢ and as
lim,, o ¢(n) = +00, we conclude that ¢ vanishes at a unique point n*, thus
we obtain a unique equilibrium point F,. If k < A—Cq, then c(k) < 0 and ¢
vanishes at a value n* > k, which corresponds to a negative effort equilibrium

(E* < 0). In this case, the equilibrium point E) is a stable equilibrium but
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(n*, E*) is of no interest since it is corresponding to unrealistic negative fishing
effort, but if k& > - then ¢(k) > 0 and ¢ vanishes at a value n* < k, with a
positive effort equilibrium E* > 0. In this case E; is a saddle point and Fj is
the unique positive stable as tr(.J) < 0 and det(J) > 0. O

Proposition 2.2. For 0 < 34 < r, E; := (n},E}) for i = 1,2,3 are three
positive equilibrium points such that we have the following cases:

1. If ¢(n*) <0, ¢(n}) < 0, we obtain a unique positive and stable equilib-
rium point (n*, E*);

2. If ¢(nf) > 0 and c(n}) > 0, we obtain a unique positive and stable
equilibrium point (n*, E*);

3. If ¢(n}) > 0 and c(n}) < 0, we obtain three positive equilibrium points
(nf, EY) for i = 1,2,3 whereby (nj, EY) and (n}, E}) are stable while
(nk, E3) is a saddle equilibrium point.

Proof. Proposition 2.2
If 0 < 34 <rin (11), ¢/ vanishes at two values n; and ny given by

k 3A k k k 3A
< = — — —_— — — = — _ — .
0<n 3(1 1 rk><3’ and 3<n2 3<1+ 1 rk:><k

Since det(J), ¥ (n) and ¢/(n) have the same sign, det(J) > 0if ne[0, ny) J(na, +o0,
and det(J) < 0 if ne(ny, ny).

Recall that lim,« . c(n*) = +o0o0. As ¢(n}) and ¢(n}) can have positive
or negative signs, so for Case 1, with ¢(n*) < 0, ¢(n]) < 0 and n* > ny,
det(J) > 0 and tr(J) < 0 thus a stable equilibrium point (n*, E*). For
Case 2, since ¢(nj) > 0 and c(ny) > 0, with n* < nf, det(J) > 0 and
tr(J) < 0 thus a stable equilibrium point (n*, £*). Finally for Case 3, given
that n < np < nj < ng < nj is satisfied, (n}, E}) and (n3, £%) are stable since
det(J) > 0 and tr(J) < 0 while (n}, E) is a saddle equilibrium point since
det(J) < 0 and tr(J) < 0. O

3 Bifurcation Analysis

We express Equation(8) in dimensionless terms and present one-parameter bi-
furcation diagrams showing how the change in parameter affects the dynamics
of the system.

We nondimensionalise Equation(8) by making the following transforma-
tions;

V4 r c
vi=\/qn,e = “—FE 7= \JqAt,p = ——, v = K= \/qk. 12
Va 1 VaAt, p W AR W vk, (12)
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Using (12) in (8), we obtain its dimensionless form thus

o = v(p(l——-)—e),
e = e(—y+v(l —ev)), (13)

where the dot ”.” denotes differentiation with respect to time 7. We are now
left with three parameters; s, p, 7.

Let us interprete these parameters. In case p < 1, and v < 1, then
Ay/q > r and A\/q > ¢ where we have demand driven over-exploitation of
the resource. If ¥ > 1 and p > 1 then it follows that A,/¢ < r and A,/qg < c
which will lead to under-exploitation of the fish resource.

In Equation(8), we observe that if we set r = ¢ = A = 1 in Equation(6),
we obtain Equation(13) with v =n, e = E, p =r, v = c and kK = k, thus,
we use initial parameters k, ¢ and r. This will show us the long- term dynamic
behaviour of the aggregated model. We shall show that there is a value of the
bifurcation parameter k =: ky where the system in (6)undergoes a saddle-node
bifurcation showing the co-existence of two stable equilibria separated by a
saddle, whereby the fish population and the fishing effort varies with k. This
is done by stating and proofing Proposition 3.1 and describing two bifurcation
diagrams that show the number and type of stability of points of equilibria as
k is varied.

Proposition 3.1. For n > 2¢, there is a value of k =: kg where the system
in Equation(9) undergoes saddle - node bifurcation as the fish population and
the fishing effort dynamics varies with the carrying capacity. Furthermore, for
k < kg, there are only two equilibria while when k > ko, two more equilibria
emerge, one stable and the other unstable.

Proof. Proposition 3.1
Using Equation(8) and (9) and further aggregation, we obtain

n=no(n, k) =: ®(n, k), (14)

where ¢(n, k) :=1—7 — % + -5. Clearly, n = 0 and the curve ¢(n, k) = 0 gives
the equilibrium points. For the stability of the equilibria points ¢(n, k) = 0,
we have

' (n, k) =¢'(n, k).

There is stability when ¢'(n, k) < 0 and instability when ¢'(n, k) > 0.
Since ¢'(n, k) is continuous for n > 0, we have a change in stability at

¢ (n, k) = —n® — 2ck +nk = 0, and find that

k= k() = (15)
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as the value of k where a bifurcation occurs.
To be able to indicate the nature of stability in the bifurcation diagram in
Figure 2 obtained using Equation(14), we observe that on the curve ¢(n, k) =

0,
dp  nx
% = ﬁ |(7’l*,k*)> O
Thus by the Implicit Function Theorem, there exists
¢(n, k(n)) = 0, (16)

k(n) defined in the neighbourhood of (n*, k*) with k(n*) = k* as smooth as
o(n, k). Differentiating (16) with respect to n, we get

dp  dodk
dn — dkdn’
from which we can see that sign(%) = —sign(2). Hence the nature of sta-

bility in the bifurcation diagram Figure 2, where the variation of k, beyond
k = kg leads to the creation of two additional equilibrium solutions.

5k

4.5

w
a
T

n, Fish population
N
a

2 -
1.5F
l unstable
1F stable v ¢
osf ed A A A
0 —_ unstable : : : : ;
0 1 2 3 4 5 6

k, carrying capacity

Figure 2: One- parameter bifurcation diagram for fish population with k£ as the bifurcation parameter
For the variation of the fishing effort with the carrying capacity as the
bifurcation parameter, we obtain

E = E(—c+n—n’E),
where we have set ¢ = A = 1 in Equation(8). Similarly, we also obtain

n=k(l—-FE),
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from Equation (9) and hence

k(1 — B)?

k=kyi=—
T k(1-FE)-2¢

is the bifurcation value and further aggregation yields
E = EO(E, k) = V(E, k), (17)

where O(E, k) := —c+k — kE — k*FE + 2k*E? — k? E®. Clearly, F = 0 and the
curve O(FE, k) = 0 gives equilibrium points. For the stability of the equilibrium
points O(E, k) = 0, we have

V(B k) = EO'(E, k),

where the prime indicates differentiation with respect to E. There is stability
when ©'(E, k) < 0 and instability when ©'(E, k) > 0. Since ©'(E, k) is con-
tinuous with £ > 0, there is a change in stability at ©’(E, k) = 0. To indicate
the nature of stability, consider

E=EO(E, k) =0.

%zl—E—2kE+4kE2—2kE3,

where it is seen that % |(£* k)< 0 for £* > 0. Thus, by the Implicit Function
Theorem, there exists

O(E, k(E)) = 0, (18)

k(E) defined in the neighbourhood of (E*, k*) with k(E*) = k* as smooth as
O(FE, k). Differentiating Equation(18) with respect to E, we obtain

do  do dk
dE — dk dE’
Since 42 < 0, it is evident that sign(92) = sign(2%), as seen in Figure 3 that

is obtained from Equation (18). The stability changes at ©'(F, k) = 0, hence
the nature of stability shown.
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Figure 3 One- parameter bifurcation diagram for fishing effort with k£ as the bifurcation parameter

O

4 Comparison of the Fish Price in the case of
two Stable Positive Equilibria

In this section we consider the variation of the equilibrium price in the case
of the co-existence of two stable equilibria found in the local stability and
bifurcation analysis. This portrays the effects of the nonlinear price variation
on the dynamics of the fishery.

If r > 24, the three equilibria (n}, E}), (n3, E5) and (nj}, Ej) are in the
positive quadrant with (n}, £3) being a saddle while the other two equilibria
are stable. Assume nj > nj, we have

1 1
Bl = — (A— C*), B =— (A— C*> (19)
qny qnq qns qns

pi=A—qniEf, p;=A—qniE;. (20)

and

Combining the two sets of expressions in (19) and (20), we obtain:

. . c(ny—nj
p1_p3:_(d 1

— (21)
q ning

The sign of the difference of price at equilibrium is opposite to the difference
of the fish population. Thus, if n > nj, then we have pj > p;. In general we
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have the following set of inequalities:

ns >ny, LBy <E], p;<pi.
Explained thus; at equilibrium, the larger the fish stock the smaller the fishing
effort and the smaller is the market price, see Figure 4.

1
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E, Fishing effort
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(o] - .
0 1 2 3 4 5
n, Fish population

Figure 4: A phase-plane plot of fish population against fishing effort with r =1,¢=0.2,k =4

The solid line for the fishing effort intersects the dashed line for fish pop-
ulation at two points (n*, E*), such that any initial condition situated above
these points leads to over-exploitation of the fish while any other initial con-
dition below it leads to under-exploitation. Thus, this model predicts that we
can have two different kinds of fisheries co-existing, namely:

1. An over-exploited fishery (n}, E}). Permitting large fishing effort
and an economic activity with a satisfying market price p*. However,
the resource is maintained at a low level and due to some other factors,
there may be a risk of fish extinction.

2. An under-exploited fishery (n}, £3). The fishery maintains the fish
stock at a desirable large level which is far from extinction but any im-
portant economic activity is not supported. A small fishing effort with
a relatively small market price is exhibited.

5 Conclusion

The results have shown that taking into account the variation of the market
price induces three different scenarios of equilibria. The parameter values of k
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and ¢, determine wheather we get one, two or three strictly positive equilibria
co-existing.

In the case Ey = (0,0), the absence of fish population implies that no
fishing can take place and if there is introduction of a fish population, the fish
population increases due to natural growth which will attract fishing activity.
Whereas, if the fish population is diminishing due to environmental conditions
or over- exploitation the fishing effort will also decline, thus this state is very
unstable. For E; = (k,0), the fish population is maintained at its carrying
capacity and with the absence of harvesting, the fishery persists at the carrying
capacity hence stable equilibrium condition.

The case in which the two strictly stable equilibria exist shows that the two
different stable equilibria can co-exist for the same fishery, this is due to taking
into account of the varying market price. In each case, the two situations have
advantages and disadvantages namely:

1 In case of over-exploitation, the fishery supports a large economic activity
but the stock risks extinction.

2 In the case of under-exploited fishery, the stock is maintained at a large
level, far from extinction but the fishery only supports a small economic
activity.
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