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Abstract: The aim of the study was to formulate a Time Series Model to be used in obtaining optimal estimates of miss-

ing observations. State space models and Kalman filter were used to handle irregularly spaced data. A non-Bayesian ap-

proach where the missing values were treated as fixed parameters. Simulated AR (1) data and corresponding estimated 

missing values were generated using a computer programme. Values were withheld and then estimated as though they were 

missing. The results revealed that simple exposition of state space representation for commonly used Time Series Models 

can be formulated. 
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1. Introduction 

One of the unfortunate facts facing data analysts is miss-

ing data. Data that are known to have been observed erro-

neously can be categorized as missing. Erroneous data can 

also wreak havoc with the estimation and forecasting of 

time series models. 

In the past, estimation of missing observations has been 

considered among others by [1, 2, 3, 4, 5, 6]. In particular, 

[7] and [8] developed state space method for dealing with 

missing observations in the long- memory context. More 

recently, [9] have given statistical analysis of incomplete 

long-range dependent data and the application of these pro-

cedures to the analysis of the annual minimum water levels 

of Nile River. 

This paper addresses both theoretical and methodologi-

cal issues related to the estimation of missing observations. 

Estimates are calculated by means of state space models 

and Kalman filter. 

2. State Space Models 

The linear state space system is given by, ���� � ���� ���	���, �� � ��
��� � ��
���(2.1) where, �� and 	� are 

� �  1 vectors, ��  and �� are � �  1 vectors, ��and �� are p 

x p matrices, and �� and ��are matrices of dimensions � � � and � � � respectively ���� represents the observed 

time series, whereas �� , �� , �� ,  �� are known matrices of 

nonrandom function. The vectors �	��, ���� are independent 

each being a sequence of independent normal random vec-

tors, having components with zero mean and unit variance. 

In order to handle various deviations which may occur in 

practice several generalization of (2.1) have been suggested. 

In this paper we consider the model in (2.1) with random 

coefficients. We allow the coefficients in (2.1) to depend on 

past observations as follows; �� � ���, ����, �� � ���, ����, ��
� �  ��� � 1, ��
�� � 

and ��
� � ��� � 1,  ��
�� �, where ���
 denotes the �-field 

generated by observationsup to time �. 

We refer to (2.1) under this settings as the generalized 

model. This generalized model encompasses some of the 

non linear time series models that have been proposed in 

the literature. 

(i) ARCH models: Supposed that �� � �, ��
� � � 

and ��  0 so that, ���� � ��� � ��	���, �� � ��� 
This is the ARCH model described in [10] 
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(ii) Dynamic linear state space models: When����, ���� 

and ���� are constant matrices and ��
� is a matrix 

of knownfunctions at � � 1 (i.e. ��
� is ���
 measur-

able) the generalized model (2.1) becomes, �� �  ��� � 	� , �� � ��
��� � �� 

Which is the state space model described in [11] 

(iii) Doubly stochastic time series model (cf.Tj stheim 

(1986)) [12]: When �� � 1, �� � 1	��� � "��� �"�
� and �� � 1, then (2.1) becomes ���� � �� � 	���, �� � ��
��� � ��. 

This corresponds to the doubly stochastic time series 

model ���� � �� � "� � "�
�, �� � ��#��,  ��
�� � � $�, 

considered in [13]. 

When��, ��
�� � � ��
�, this turns out to be a special case 

of the random Coefficient Autoregression (RCA) model of 

[14]. Moreover if we take, �� �  ��
���
� � 	� ,  �� � �� 

with ��
� � % � & exp '�(��
�) * then the generalized 

model (2.1) describes the exponential autoregressive model 

of [15]. 

Theorem 2.1 This theorem gives prediction and fixed 

point smoothing algorithms for the generalize model (2.1) 

Let,�+� � ,���\��
�� �,  Σ/ � E 1��� � �+����� � �+��2\���1� 

Then, �+��� � ���+� � 3�4�� � �5�6, Σ/�� � ����7 � '�� � 3���
�*Σ/'�� � 3���
�*7 �3���
���
�7 3�7 

Where,3� � ��Σ/��
�7 4��
�Σ/��
�7 � ��
���
�7 6�and �5� � ,���\��
�� �; 87and 8� denote the transpose and the 

pseudo inverse respectively of a matrix 8. 

Proof of this theorem is a straight forward extension of 

results as presented by [16]. 

Theorem 2.2 

For� 9 �:, let �;�<\� � , =��<\���>be the estimate of ��< 

base on the observations up to time t, Σ;/be the covariance 

matrix, Σ;� � , ?=��< � �+�> =��< � �+�<>7 \��
�� @andΣ/A �
E ?=��< � �+�<\�> =��< � �+�<\�>7 \��
�� @ 

Then,�;�<\� � �;�<\�
� � k; ���� � ��
��+��, � 9 �:  

Where k; � � Σ;���
�7 4��
�Σ/��
�7 � ��
�B/
�2 6�, Σ;��� � Σ;�4�� � 3���
�67 , Σ�
�A � Σ/ for � D �: andΣ�A �Σ�
�A � Σ;���
�7 k; �7 , � E �:. 

Proof of this theorem is a straight forward generalization 

of results in [16] or [17]. 

This research used state space models methodology 

which can handle irregularly spaced data. It also used the 

Kalman filtering technique and a non-Bayesian approach 

where the missing values were treated as fixed parameters. 

3. Results and Discussions 

Autoregressive conditionally heteroscedastic (ARCH) 

type models and application to missing data 

There are two different approaches of estimating missing 

values in time series; 

1. A Bayesian approach:Which uses Kalman filtering 

technique. 

2. A non-Bayesian approach: Where the missing val-

ues are treated as fixed parameters. 

This paper uses the Kalman type recursive approach to 

estimate the missing values by replacing them with normal 

random variables. This type of approach may be viewed as 

one which uses a prior for the parameter which replaces the 

missing value. 

3.1. One Missing Observation 

Now we indicate an appropriate way to modify a given 

non linear time series to reflect the fact that the observation 

at time m is missing.Let �F��be a time series in which FG 

is missing and FHI � �F� , F) , … ,  FG��, … , FH  � 

If we know the first two conditional moments ,4F���\��K and �LMF��1\��K, then F��1 can be written 

asF��� � ,4F���\��N6 � F��� � ,4F���\��N6(1) 

Suppose that the time series F� satisfies,4F���\��N6 ���
�F�and F��� � ,4F���\��N6 � ��
�	��� (2) 

Where ��
� and ��
� are ��
�N  measurable and �	�� is an 

i.i.d. ~P'0,1* sequence. Then F��� has ARCH representa-

tion. F��� � ��
�F� � ��
�	��� (3) 

The restriction in (2) is introduced to apply the recursive 

approach. Now we consider the estimation of a missing 

observation as a parameter estimation problem in a particu-

lar formulation of the generalized model (2.1). ���� � ��
��� � ��
�	���, QLM4F���\��N6(4) �� � ��
��� � ��
��� with �G
� � 0, �G
� � 1, �� �1, � R S � 1; �� � 0, � R S � 1; 
Then U � �F�, F), … , FG
�,  �G, FG��,  FG�), … , FH � is 

the extended observed series. Here �G is a random variable 

replacing the missing observation. 

Such a formulation was also considered in Abraham and 

Thavaneswaran (1991) [1] 

Using theorem 2.1 and 2.2 we have equations, 3� � ��
�Σ/��
�'��
�) Σ/ � ��
�) *� and Σ/�� � ��
�) �'��
� � 3���
�*)Σ/ � 3�)��
�) . 

Substituting the values of �� ,  ��
�, ��and ��
� gives 3� � ��
�Σ/4Σ/6� 3� � ��
�                                  (5) 

For � R S and 
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Σ/�� � ��
�)                             (6) 

Alsofor � � S, 3G � �G
�ΣV�G
�'�)G
�ΣV ��S�12+, 

But �G
� � 0, hence 3G � 0and ΣV�� � �G
�) +'�G
� − 3G�G
�*)ΣV + 3G) �G
�) but 3G � 0 to give ΣV�� � �G
�) + �G
�) ΣV (7) 

Where from (6) when� � S we haveΣV�� � �G
�)  so 

that ΣV � �G
)) . 

Substituting for ΣVin (7) we have ΣV�� � �G
�) +�G
�) �G
)) (8) 

Also from theorem 2.2 we have Σ;�
� � Σ;�'�G
� −3S�S−1but 3S�0 so that 

Σ;�
� � 0                        (9) 

and Σ;G�� � Σ;G'�G
� − 3G�G
�*. But 3G � 0so that Σ;G�� � Σ;G�G
�) ,also Σ;G � ΣV � �G
)) . 
Hence,Σ;G�� � �G
�) �G
))  (10) 

We also have from theorem (2.2)�;�<\� � �;�<\�
� +
k; ���� − ��
��+��, but in this case� � S and �� � 1 gives, �;G\� � �;G\�
� + k; ���� − ��
��+��,and at � � S + 1 

�;G\G�� � �;G\G + k; G����G�� − �+G���(11) 

Since, �� � �� � F�.To find�;G\Y we have that �;G\Y �,Z�G\�G�[ � ,Z'�G
)�G
� + �G
)	G*\�G�[  � �G
)�+G
� � �G
)FG
�. 

Next,�+G�� � ,Z�G��\�G
�� [ � ,Z'�G
)�G +�S−1	S+1\�S�which gives �S−1��S−1�S and  �+G � �G
)�+G
� � �G
)FG
�.Combining this gives �+G�� � �G
��G
)FG
�. 

Moreover, k; � � Σ;���
�7 4��
�Σ/��
�7 + ��
���
�7 6�  

k; � � \]^\_ (12) 

Since ��
� � 1, ��
� � 0 and at � � S + 1(12) leads to 

k; G�� � \]Y`a\b`a � cYdaeYdff
eYdaf �cYdaf eYdff from (8) and (10). (13) 

Thus the estimate of the S�g observation based on FG
� 

is F;G\Y`a � �G
)FG
� + cYdaeYdff
eYdaf �cYdaf eYdff 4FG�� −

�S−1�S−2FS−1(14)  

This simplifies to 

F;G\Y`a � �G
)�G
�) FG
� + �G
��G
)) FG���G
�) + �G
�) �G
))  

Moreover, for a nonlinear model of the form F��� � %F� + 	��� in which the S�g observation FG is 

missing, the estimate of FG based on �G���
 is given by 

F;G\G�� � %FG
�1 + %)FG
�) 4FG
) + FG��6 
Autoregressive models with deterministic time vary-

ing coefficient: 

Model of the form 

F� − �'�, %*F�
� � 	�               (15) 

have been found to be quite useful, in particular in signal 

processing [18] as in 3.15, it can be shown that the estimate F;G\G�� of the missing observation based on �G���
is given 

by; 

F;G\G�� � �'S + 1, %*FG�� + �'S, %*FG
�1 + �)'S + 1, %*  

Bilinear models: 

Consider the modelF − %F � hi� + �F�
)i� 

The estimation of missing observation, FG, can be ob-

tained by writing the model as F� � ��
)F�
� + ��
)i� 

Where��
) � % and ��
) � h + �F�
). Hence the esti-

mate of FG, F;G\Y`a � ,ZFG\�G��� [ and is given by 

F;G\Y`a � %�G
)) FG�� + %�G
�) FG
��G
�) + %)eYdff  

3.2. Two Consecutive Missing Observations 

(a) The estimate of jkl observation based onmj�n. 

We consider a slightly modified form of the model (3) in 

which we let ��) � �), F��� � ��
)F�
� + ��
)i���  

Here FG and FG�� missing and�� is ��Nmeasurable. The 

problem is to estimate FG based on the available data 

FoH � �F�, F), … , FG
�,FG�) , … , FH �. 

The corresponding state space model may be written as  

p���� � ��
��� + ��
�	���F� � ��
����� � ��
��� + ��
���
q (16) 

Where �G
� � �G � 0, �G
� � �G � 1,  �� � 1, for � R S; �� � 0, � R S, S − 1 

Then U � �F�,F), … , FG
�, �G, FG��, FG�), … , FH � is 

the extended observed series. 

Here �G is a random variable replacing the missing ob-

servation. By theorem (2.1) and (2.2) it can be shown that 

for � R S, S + 1, 3� � ��
) and 3G � 3G�� � 3G�) � 0. 
Also from theorem 2.2 we have the following equations  

3;� � Σ;���
�4��
�) + ��
�) 6�, Σ;��� � Σ;�'��
� − 3���
�*. 

Hence we have 3;� � Σ;�4Σ;�6� � \]^\^ � 1 (17) 

which givesΣ;��� � Σ;���
� (18) 

and because �G � �G
� � 0; �G � �G
� � 1; �� �1, �� � 0 at � R S, S + 1 we also get 

3;G �  3;G�� � 0 (19) 

It can be shown that Σ;G�) � �G
��G
)�G
r) (20) 

We have from theorem (2.2) we have the following equa-

tion �;G|� � �;G|�
� + 3;���� − ��
��+��, 

Which by taking expectation and simplifying gives 

�+G�) � �G
��+G��, �+G�� � �G
)�+G and �+G ��G
r�+G
� � �G
rFG
� 
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which combines to give 

�+G�) � �G
��G
)�G
rFG
�. 

Thus the estimate of S�gobservation based on FG�) is 

F;G|G�) ��G
rFG
� + 3;G�)'FG�) − �G
��G
)�G
rFG
� *(21) 

But 3;G�) � cYdacYdfeYdtf
eYdaf cYdaf eYdff �cYdaf cYdff eYdtf  (22) 

Hence (21)becomes,F;G|G�) � �G
rFG
� +
cYdacYdfeYdtf

eYdaf cYdaf eYdff �cYdaf cYdff eYdtf 'FG�) −
�S−1�S−2�S−3FS−1, 

Which simplifies to giveF;G|G�) �
cYdt�eYdaf cYdaf eYdff �vYdacYdaf cYdff eYdtf vY`feYdaf cYdaf eYdff �cYdaf cYdff eYdtf (23) 

Which is the required estimate of S�g obser-

vation based onFG�). 
(b) The estimate of the 'j + w*klobservation based 

on mj�n. 

We estimateFG��observation based on available 

dataFHI � �F�, F) , … , FG
�, F+G, FG�), … , FH  �, where F+G 

is the estimate of FG  from the previous steps. 

The corresponding state space models becomes, 

p ���� � ��
x�� + ��
xi���F� � ��
����� � ��
��� + ��
���
q(24) 

In this case we have �G � 0, �G � 1; and �� � 0, �� �1 for � R S + 1. The extended data will be,  U ��F�,  F) , … , FG
�, F+G,  �G��, FG�), … , FH  �where �G��a 

normal random variable is replacing the missing observa-

tion. This estimate is now treated as if only one observation 

is missing in the data. 

Using theorems 2.1 we have the modified form as, Σ��� � ��
r) + '��
r − 3���
�*)Σ� + 3�)��
�) and3� ���
rΣ���
�4��
�) Σ� − ��
�) 6�, then  3� � ��
rΣ�4Σ�6� � ��
r (25) 

and Σ��� � ��
r) + '��
r − 3�*)Σ� 

But from (25) 3� � ��
r, henceΣ��� � ��
r) (26) 

Also from theorem (2.2) we have 3;� � Σ;���
�4��
�) Σ� − ��
�) 6�and Σ;��� � Σ;�'��
r −3���−1y. Since, ���1, ���0; �RS+1 then this be-

comes3;� � Σ�4Σ�6� � \]^\^as in (17) and Σ;��� � 0(27) 

Since ��
� � 1 and 3� � ��
r. 

Setting � � S + 1 �G � 0, �G � 1 we obtain 3G�� � 0 

(28) 

and ΣG�� � ��
)) + �G
)) Σ���.But from(26) at � � S, ΣG�) � �G
r)  

Hence, ΣG�) � �G
)) + �G
)) �G
r) (29) 

and Σ;G�) � Σ;G�)'�G
) − 3G���G* at �G �0, 3G�� � 0, we have; Σ;G�) � �G
)Σ;G�� and 3;G�� � 0. Also, Σ;G�) ��G
)Σ;G�� � �G
)ΣG�� � �G
)�G
r)  

Σ;G�) � �G
)�G
r)  (30) 

But at� E �: , �;�:|� � �;�<|^da + 3;���� − �+�� since �� � 1.  

In this case if we let �: � S + 1 and � � S + 2 we 

have�;G��|G�) � �;G��|G�� + 3;G�) ��G�) − �+G�)� 

Where,�;G��|G�� � ,Z�G��|�G��� [ � ,Z'�G
r�G +�S−3iS+1|�S+1�  

Which gives�;G��|G�� � �G
rF+G. 
Next�+G�) � ,Z�G�)|�G��� [ � ,Z'�G
)�G�� +�S−2iS+2|�S+1���S−2,�S+1|�S+2���S−2�S+1 and�+G�� � �G
)�+G which combines to give �+G�) ��G
)�G
r�+G � �G
)�G
r�G
xF+G, �+G � F+G since the 

data has been observed up to time � � S. 

Hence, 

F+G��|G�) � �G
rF+G + 3;G�)�FG�) − �G
)�G
r F+G� (31) 

But,3;G�) � \]Y`f\Y`f � cYdf eYdtf
eYdff �cYdff eYdtf  (32) 

Replacing for3;G�) in (31) we obtainF;G��|G�) �
�G
r F+G + cYdf eYdtf

eYdff �cYdff eYdtf �FG�) − �G
)�G
r F+G�. 

Simplifying this 

givesF;G��|G�) � cYdt�eYdff �v+Y�cYdfeYdtf vY`feYdff �cYdff eYdtf  (33) 

3.3. Three Consecutive Missing Observations 

a) The estimate of jkl observation based on mj�z. 

The modified state space model is given by 

p ���� � ��
r�� + ��
ri���F� � ��
��� �� � ��
��� + ��
���
q(42) 

In this case we have three consecutive missing observa-

tionsFG, FG�� and FG�) for which we need to estimate FG 

before we estimate the remaining two observations respec-

tively.The initial observation set is FHI � 'F�, F), … , FG
�, FG�r, … , FH*. The extended ob-

served series is U � 'F�, F) , … ,  FG
� , �G, FG�r , … , FH*  where�G is a 

normal random variable replacing the missing observation. 

Usingtheorems 2.1 and2.2we have the modified set of 

equations 

3� � ��
rΣ���
�4��
�) Σ���
�) 6� (34) 

and Σ/�� � ��
r) + '��
r − 3���
�*)Σ� + 3�)��
�) (44) 

In this case�G�� � �G � �G�� � 0, �G
� � �G ��G�� � 1; �� � 1, �� � 0; � R S, S + 1, S + 2. 

This implies that,3� � ��
randΣ/�� � ��
r) . 

It can be shown that ΣG�r � �G
�)  �G
�) �G
)) +�G
�) �G
)) �G
r + �G
�) �G
)) �G
r) �G
x)  (35) 

and Σ;G�r � �G
��G
)�G
r�G
x)   

We have�;G\Y`t � �;G\Y`f + k; G�r��G�r − �+G�r� (36) 

3;G�r � \]Y`t\Y`t �
cYdacYdfcYdt eYd{f

eYdaf �cYdaf eYdff �cYdaf cYdff eYdtf �cYdaf cYdff cYdtf eYd{f  (37) 
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Making successive substitution in (36) we get 

F;G|G�r ��G
xFG
� +�S−1�S−2�S−3 �S−42�S−12+�S−12�S−22+�S−12�S−22�S−32+�S−12�S−22�S−32�S−42FS+3−�S−1�S−2�S−3�S−4 FS−1. 

Simplifying this gives 

F;G|G�r ��S−4�S−12+�S−12�S−22+�S−12�S−22�S−32FS−1+�S−12�S−22�S−32�S−42FS+3�S−12+�S−12�S−22+�S−12�S−22�S−32+�S−12�S−22�S−32�S−42(38) 

(b) The estimate of 'j + w*kl observation based on mj�z 

This is treated as two missing observations as seen earli-

er the modified state space representations  

are 

p ���� � ��
x�� + ��
xi���F� � ��
��� �� � ��
��� + ��
���
q(39) 

The initial observation is F}I � �F�,  F), … , FG
�, F+G, FG�r, … , FH�, wesee that FG�� and FG�) are missing hence, we need to estimate FG��. Then the extended observed series is  U �'F�, F) , … ,  FG
� , F+G,�G��, FG�r , … , FH *, here F+Gis es-

timate of FG  baseonFG�r and�G��  is a normalrandom 

variable replacing the missing observation. 

Using theorem 2.1 and 2.2 as before we have. �G � �G�� � 0,�G � �G�� � 1; �� � 1; �� � 0; � R S + 1, S + 2, 3� � ��
xand  Σ��� � ��
x)  (40) 

Also 3G�� � 3G�) � 0. 
Next we have ΣG�) � �G
)) + �G
r) ΣG��andΣG�r ��G
)) + �G
)) ΣG�)  

Hence ΣG�) � �G
)) + �G
)) �G
r) +�G
)) �G
r) ΣG��(41) 

From (40) at � � S, ΣG�� � �G
x) , hence(41) becomes 

ΣG�r � �G
)) + �G
)) �G
r) + �G
)) �G
r) �G
x)  (42) 

From theorem 2.2 we have 

3�] � \~̂
\^ andΣ;��� � 0. Also Σ;��) � �G
rΣ;���andΣ;��r �

�G
)Σ;��) 

So that,Σ;��r � �G
)�G
rΣ;��� � �G
)�G
rΣG��, 
whereΣG�� � �G
x) . 

Hence,Σ;��r � �G
)�G
r �G
x) (43) 

Also, 3�] � \~̂
\^ so that,3;G�r � \]Y`t\Y`t 

Where from equations (42) and (43) we get3;G�r �cYdfcYdt eYd{f
eYdff �cYdff eYdtf �cYdff cYdtf eYd{f  (44) 

Then�;�<|� � �;�<|^da + 3;���� − ��
��+��, � 9 �: (45) 

But �� � 1 and �: � S + 1 and � � S + 3 so that, 

�;G��|G�r � �;G��|G�) + 3;G�r ��G�r − �+G���(46) 

We have �;G��|G�) � ,Z�G��|�G�)� [ � ,Z'�G
x�G +�G
x	G��*|�G�)� [ � �G
x,��G|�G�)� � � �G
x�+G, 
But �+G � F+G since we have made an observation up to 

time � � S hence,�;G��|G�) � �G
xF+G. 
Next,�+G�r � ,Z�G�r|�G�)� [ � ,Z'�G
)�G�) +�S−2iS+3|�S+2���S−2�S+2 �G�) � �G
r�+G��, �+G�� � �G
x�+G � �G
xF+G and 

these combines to give �+G�r � �G
)�G
r�+G�� � �G
)�G
r�G
x�+G, which 

gives 

 �+G�r � �G
)�G
r�G
xF+G (47) 

WhereF+Gis the estimate of FG obtained ealier in the 

same section. Hence (46) becomes, 

F+G��|G�r � �G
xF+G+ 3;G�r�FG�r − �G
)�G
r�G
x F+G� 

� �G
x F+G
+ �G
)�G
r �G
x)

�G
)) + �G
)) �G
r) + �G
)) �G
r) �G
x) �FG�r
− �G
)�G
r�G
x F+G* 

Simplifying this gives 

F+G��|G�r � cYd{�eYdff �cYdff eYdtf �v+Y�cYdff cYdtf eYd{f vY`teYdff �cYdff eYdtf �cYdff cYdtf eYd{f  

(48) 

c) The estimate of 'j + n*kl observation based on mj�z. 

This is treated as one missing observation 

sinceFGandFG�� has been estimated. Then we have the 

new set of observations as F}I � �F�, F), … , FG
�,  F+G, F+G��, FG�r, … , FH�the new 

state space representations are; 

p ���� � ��
��� + ��
�i���F� � ��
����� � ��
��� + ��
���
q(67) 

Then F}I � �F�, F), … , FG
�,  F+G, F+G��, �G�), FG�r, … , FH� is 

the extended observed series. Here F+G and F+G�� are the 

estimates of FG and FG�� from the previous steps. �G�) is 

a normal random variable replacingthe missing observation. 

In this case �G�) � 0, �G�) � 1; �� � 1, �� � 0; � R S +2. Again from the theorems 2.1 and 2.2 we have 

3� � ��
�, Σ��� � ��
�) (49) 

3G�) � 0, ΣV�r � �G
r) + �G
r) ΣV�) (50) 

Setting� � Sin (49) we obtain Σ��� � �G
�) andΣ��) ��G
x) . 

Hence, (50) now becomes ΣV�r � �G
r) +
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�G
r) �G
x) (51) 

Also 3�] � \~̂
\^so that, 3;G�r � \]Y`t\Y`t (52) 

3;G�) � 0, Σ;G�r � �G
rΣ;G�) � �G
rΣG�). 

Thus, Σ;G�r � �G
r�G
x(53) 

So that, 3;G�r � cYdt eYd{f
eYdtf �cYdtf eYd{f (54) 

Then, �;�:|� � �;�<|^da + 3;���� − ��
��+��, � 9 �: (55) 

But �� � 1 at �: � S � 2 and � � S � 3 so that (55) 

becomes �;G�)|G�r � �;G�)|G�) � 3;G�r ��G�r � �+G�r�(56) 

Thus, �+G�)|G�) � ,Z�G�)|�G�)� [ � ,Z'�G
x�G�� ��S�4iS�2|�S�2���S�4,�S�1|�S�2���S�4�S�1 Since we have made an observation up to time � � S �1 we have�+G�� � F+G�� so that, �+G�)|G�) � �G
xF+G��. 

Next, �+G�r � ,Z�G�r|�G�)� [ � ,Z'�G
r�G�) ��S�2iS�3|�S�2���S�3,�S�3|�S�2���S�3�S�2 That is, �+G�r � �G
r�+G�)and �+G�) � �G
x�+G��com-

bines to give �+G�r � �G
r��G
x�+G��� � �G
r�G
xF+G�). 

Hence (56) gives F+G�)|G�r � �G
xF+G�� �3;G�r�FG�r � �G
r�G
x F+G���. 

Substituting for 3;G�r we 

haveF;G�)|G�r � �G
x F+G�� � cYdt eYd{feYdtf �cYdtf eYd{f �FG�r ��S�3�S�4 FS�1  

This simplifies to 

giveF;G�)|G�r � cYd{�eYdtf � v+Y`a�cYdteYd{f vY`teYdtf �cYdtf eYd{f  (57) 

We now list these models in order, to obtain the general 

pattern of obtaining estimate of missing observation at any 

stage. Hence we have; 

1. F;G|G�� � cYdf�eYdaf � vYda�cYdaeYdff vY`aeYdaf �cYdaf eYdff  

2. F;G|G�) �cYdt�eYdaf cYdaf eYdff � vYda�cYdacYdff eYdtf vY`feYdaf �cYdaf eYdff �cYdaf cYdff eYdtf  

F;G|G�) � �G
r'�G
)) * F+G � �G
)�G
r) FG�)�G
)) � �G
)) �G
r)  

3. F;G|G�r �cYd{�eYdaf cYdaf eYdff �cYdaf cYdff eYdtf � vYda�cYdacYdfcYdteYd{f vY`teYdaf �cYdaf eYdff �cYdaf cYdff eYdtf �cYdaf cYdff cYdtf eYd{f  

F;G��|G�r� �G
x'�G
)) �G
)) �G
r) * F+G � �G
)�G
r�G
x) FG�r�G
)) � �G
)) �G
r) � �G
)) �G
r) �G
x)  

F;G�)|G�r � �G
x'�G
r) * F+G�� � �G
r�G
x) FG�r�G
r) � �G
r) �G
x)  

S.F;G|G�� �
�cYd'�`a*�eYdaf �cYdaf eYdff �cYdaf cYdff eYdtf ���cYdaf cYdff …cfYd'�`a*eYd�f �vcYdacYdf…cYd�eYd'�`a*�Y`�f

eYdaf �cYdaf eYdff �cYdaf cYdff eYdtf ���cYdaf cYdff …cYd�f eYd'�`a*f
F;G�'�
�*|G��� �G
'���*'�G
�) * F+G�'�
)* � �G
��G
'���*) FG���G
�) � �G
�) �G
'���*)  

The estimate of F;G��|G�) are the same as those obtained 

by [2] and [19]. The approach in section 3 can only handle 

some of the nonlinear models mentioned earlier. Let’s give 

an example of AR (1) model with a constant conditional 

variance, ��) � �) and �� � % (See [1]. 

In this case the estimates of the missing observations FG,  FG��,  FG�), FG�rfor an AR(1) model from 1 up to � 

missing values will be as follows; 

1. F;G|G�� � �vYda��vY`a���f  

2. F;G|G�) � �����f�vYda��fvY`f���f��{  

F;G|G�) � %F+G � %FG�)1 � %)  

3. F;G�)|G�r � �����f��{�vYda��tvY`t���f��{���  

F;G��|G�r � %'1 � %)*F+G � %)FG�r1 � %) � %x  

F;G�)|G�r � �F+G�� �  �FG�r1 � %)  

S. F;G|G�� � �����f��{����f'�da*vY`�����vY`����f��{����f�  

F;G�'�
�*|G�� � �FG�'�
)* � �FG��1 � %)  

Hence the general form of these sequences of estimates 

is given by; 

F;G�:|G�� � �=∑ �f��d�da��� >�b`�da���d��b`�∑ �f��d���� (58) 

Where � � 0,1,2, … , � � 1 and � � 1,2,3, … , �for � 9 �. 

An empirical study 

In this section empirical study is carried out to illustrate 

the results obtained in section three on simulated AR (1) 

data. Some values are withheld and then estimated as 

though they were missing. 

Simulated AR (1) data and corresponding estimated 

missing values generated using formula (77) in section 

three are compared. 

Tables 1 and 2 and tables 4.1 and 4.2 gives actual data 

and estimates of missing values for different values of the 

parameter % and initial value F�. 

Estimation of missing observations on simulated AR 
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(1) data. 

AR (1) process is written as F� � %F�
� + $�, where $� 

is a purely random process which is normally distributed 

with mean zero and unit variance (i.e. $�~P'0,1*, % is 

some constant given within the range |%| D 1and F� is the 

initial observation which we choose to determine the size 

of the data. 

Hence we have, 

p F� � %F� � $�F) � %F� � $)�FH � %FH
� � $H
� (59) 

We generated AR (1) data using a computer programme. 

The general formula (58) in section three was then applied 

to the simulated AR (1) data with several consecutive miss-

ing observations which were artificially created. Table 1.1 

illustrates the missing values and their estimates and Tables 

1.2 illustrate the same for different values of % and F�. 

If we set % � 0.86 and F� � 100, we obtain the follow-

ing AR(1) data for the first 20 values. 

Table 1. Eighteen consecutive missing values from position 2 to 19 with 

their estimates. 

� 
Actual AR(1) 

data'F�* 

Data with missing 

values 
Estimated values 

1 86.21399 86.21399  

2 73.03785 - 74.11012 

3 63.71109 - 63.69526 

4 53.52442 - 54.73207 

5 47.14499 - 47.01625 

6 38.94666 - 40.37197 

7 35.22709 - 34.6478 

8 31.41615 - 29.71327 

9 25.95318 - 25.45593 

10 21.70792 - 21.77875 

11 17.5829 - 18.59792 

12 15.35208 - 15.84095 

13 12.63766 - 13.44501 

14 11.30084 - 11.35549 

15 9.111297 - 9.524767 

16 8.188405 - 7.91112 

17 6.679135 - 6.477774 

18 5.224529 - 5.192006 

19 3.283825 - 4.024678 

20 2.94902 2.94902  

 

Positions of missing values Calculated�) value Table value �)�.��,x 

2-19 0.53467 27.59 

We generate other 20 different values of AR (1) with % � 0.5 and F� � 1000000 as illustrated in Table 1.2. 

Table 2. Eighteen consecutive missing values from position 2 to 19 with 

their estimates. � Actual AR(1) 

ta'F�* 

Data with missing 

values 

Estimated values 

1 500000 500000  

2 249999.8 - 250000 

3 125001.2 - 125000 

4 62500.23 - 62500 

5 31250.01 - 31250 

6 15622.97 - 15625 

7 7809.437 - 7812.5 

8 3905.664 - 3906.25 

9 1953.414 - 1953.125 

10 977.1117 - 976.5632 

11 488.8349 - 488.2828 

12 244.358 - 244.1437 

13 122.5056 - 122.0765 

14 61.77014 - 61.04752 

15 33.05295 - 30.54231 

16 15.78969 - 15.30825 

17 7.215367 - 7.728314 

18 3.808213 - 4.012536 

19 2.473077 - 2.303026 

20 1.745028 1.745028  

 
Positions of missing 

values 

Calculated�) value Table value�)�.��,�� 

2-19 0.27716 27.59 

Chi-square goodness of fit statistics was calculated to 

compare the estimated and actual values. Each of the chi-

square values were not significant for any reasonable level 

of significance which confirms that the estimated values 

agree well with the actual values. 

4. Conclusions 

Most methods developed for estimation of missing ob-

servations in time series Analysis, have been limited to the 

case of one or two consecutive missing observations. In 

this paper, we have employed the state space models which 

can handle irregularly spaced data. Missing observations in 

a Time Series can safely be treated as special case of such 

data. In particular, we have extended the formula derived in 

[1] to encompass the case where there are several consecu-

tive missing observations. In a special case, we apply the 

formula on AR (1) model and it performs satisfactorily, 

since it has only one parameter. 
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