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ABSTRACT 

We have considered a system consisting of a mixture of helium isotopes 3He-4He interacting weakly in 

pairs. The partition function of the system with duo-spin and varying number of bosons and fermions is 

developed to bring out the superfluid properties of the system. The study focused on a Grand Canonical 

ensemble of 3He - 4He isotopes whose superfluid properties have been determined by distinctively 

singling out the duo spin component. The internal energy was established algebraically, analyzed and 

found out to be increasing with temperature. For high temperatures, internal energy remains constant due 

to particle saturation. 
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INTRODUCTION 

Statistical thermodynamics explains the thermodynamic behavior of macroscopic systems as derived from 

the properties of microscopic systems. The ensemble model approach consisting of large collection of 

particles can be used to study statistical mechanics. Bosons are atoms with even sum of the numbers of 

elementary particles, possessing integral spin angular momentum. They obey Bose-Einstein statistics. 

Fermions are atoms with an odd sum of the number of elementary particles; possess odd half-integral spin 

angular momentum. They obey Fermi-Dirac statistics  

 This study focuses on a system with varying number of particles. Thus particle occupancy is not solely 

dependent on temperature. These conditions apply to a grand canonical ensemble which may be 

applicable to real systems (Sakwa et al., 2013) 

The stable fermionic (3He) and bosonic (4He) isotopes of helium (in their ground state), as well as 

mixtures of the two, have exhibited quantum properties in both the liquid and solid phases (McNamara et 

al, 2013). More recently, the advent of laser cooling and trapping techniques lead to the production of 

Bose-Einstein condensates (BECs) and the observation of Fermi degeneracy in weakly interacting atomic 

gases. Bose condensed atomic species have each been exhibiting its own unique features. Studies of 

degenerate fermions have a similar impact, and  they have been the object of much study in recent years, 

culminating in the detection of superfluidity across the entire crossover region between BEC and 

Bardeen-Cooper-Schrieffer pairs (Wu C et al., 2011). Degenerate atomic Fermi gases have been difficult 

to realize for two reasons: first, evaporative cooling relies upon elastic re-thermalizing collisions, which at 

the temperatures of interest (<1 mK) are primarily s-wave in nature and are forbidden for identical 

fermions; and second, the number of fermionic isotopes suitable for laser cooling and trapping is 

small(Win Vassen,2013). Sympathetic cooling overcomes the limit to evaporative cooling by introducing 

a second component (spin state, isotope or element) to the gas; thermalization between the two 

components then allows the mixture as a whole to be cooled.  

Rafael E et al(2015), studied the contact and static factor of bosonic and fermionic systems, they observed 

that few-body ensembles consist of majority atoms obeying certain statistics (Fermi or Bose) and an 

impurity atom in a different hyperfine state. The repulsive interactions between majority-impurity and 

majority-majority were varied from weak to strong. They  showed that the majority-impurity repulsion 

was mainly responsible for the loss of coherence in the strongly interacting regime. The momentum 
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distribution follows the C/p4 universal behaviour for the high momentum tail, but the contact C is strongly 

dependent on the strength of the majority-impurity and in a different way on the majority-majority 

interactions. The static structure factor of the majority atoms exposes a low momentum peak for strong 

majority-impurity repulsion, which is attributed to an effective attraction not expected for purely repulsive 

forces.. 

The Partition function for a Grand canonical ensemble for a mixture of 3He-4He with duo spin has been 

developed. The results of key derivations and analysis of particle and internal energy are presented. 

 

Theoretical Derivations 

Introduction 

To study the properties of a mixture of bosons and fermions with different concentrations, consider an 

assembly consisting of N particles with Nb being the number of bosons and Nf being the number of 

fermions. 

Therefore, 𝑁 = 𝑁𝑏 + 𝑁𝑓         (1) 

The energy states of the assembly are .............,.........,, .321 n and in the statistical equilibrium, the 

number of particles or systems assigned to this energy levels are .............,.........,, 321 jnnnn respectively 

such that 







1J

j Nn                       (2) 

And 







1j

jj En 

          

  (3) 

Similarly for a jth energy level, 

jfjbj nnn             (4) 

Where, 

jbn  The number of bosons in the jth energy level  

jfn  The number of fermions in the jth energy level 

Let 
j be the degeneracy of the jth level. Then the number of ways 

jbP  in which 
jbn  bosons can be 

assigned to
j states in the jth level is given by 

  jbn

jjbP             (5) 

However , the occupancy of fermions is subject to Pauli’s exclusion principle. Then  the number of ways 

jfP  in which 
jfn fermions can be assigned to 

j  states in the jth level is given by  

 !!

!

jfjjf

j

jf
nn

P






          (6) 

Fermion occupancy of any energy level is independent of bosons occupancy of that energy level i.e.

jfjb nn   hence the above probabilities are multiplicative. The combined number of ways of assigning 

𝑛𝑗𝑏 bosons and 𝑛𝑖𝑓 fermions in an energy level is given by 

   
   !!2!

!2.2

jfjbjfjf

j

n

j

jbf
nnnn

P

jb


          (7) 

Where 2 is the spin degeneracy of a binary system of helium isotopes particles. 
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In the above expression, permutations among identical pairs are eliminated by dividing by !jfn . Similarly, 

dividing by (𝑛𝑗𝑏 − 𝑛𝑗𝑓)!, eliminates all identical complexions of unpaired bosons. 

The total number of ways of distributing these particles among the independent energy levels (j = 1, 2, 

3…) is the product of such expressions in equation (7). 











ij

jbf

j

bf PC
1

   
    
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



 !!2!

!2.2

jfjbjfjf

j

n

j

nnnn

jb

      (8)  

The concern now is how these 
jn particles distribute themselves in thermal equilibrium to occupy 

maximum volume in phase space. Thus, for maximum𝐶𝑏𝑓, we allow the variation of 𝐶𝑏𝑓 with respect to 

jbn  and 
jfn set the result equal to zero. By use of the Stirlings’ approximation and the Langrage 

undetermined multipliers, the most probable distribution in energy for bosons and fermions in the 

degenerate system is determined as  

The total energy E of the assembly will be given by 

fb EEE             (9) 

Where bE is the energy of the bosons and 
fE is the energy of the fermions. 

Simplifying equation (8) by using Stirling’s approximations gives 

)!ln()!2ln(![ln!2ln)1(ln
1

jfjbjfjf

j

jbbf nnnnnC 




     (10) 

Expanding and then differentiating equation (10) with respect to 
jfn  gives 

  
  













 






jf

jfjbjf

bf

jf n

nnn
C

n

2
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Also, differentiating equation (10) with respect to 
jbn  gives 

 






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


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To maximize
bfCln , we differentiate 

bfCln  and set the result to zero i.e. 


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j
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jfj

jbbf

jb

bf dnC
n

dnC
n

C      (13) 

jbn  and 
jfn represent allowable changes in the distribution numbers from the required distribution, 

they should continue to satisfy the equation given by equation (1) to (4). Since N and E are fixed, the 

variation in jbn  and jfn  must satisfy the following equations. 

 









1 1

0
j j

jfjb dndn           (14) 

0
11








 j

jfj

j

jbj dndn           (15) 

Combine equations (13), (14) and (15) by Lagrange’s undetermined multipliers denoted by   and  . 

Multiplying first and second terms of equation (14) by - b  and -
f respectively, equation (15) by -   

and adding to equation (13). 
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Rearranging the above equation gives 
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Similarly, multiplying first and second terms of equation (14) by - b  and -
f respectively, equation (15) 

by -   and adding to equation (13). 
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The algebraic sum of equation (16) and (17) fields equation (18) 
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In equation (18), we set the coefficients of 
jbdn  and 

jfdn   to zero since; 
jbdn  and 

jfdn are allowable 

varriables thus the above equation can be written as 

0)()(ln 



jbbf
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C
n
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Substituting equation (12) in equation (19), we get 
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Making 
jbn  the subject in equation (22), yields 
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
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Substituting for 
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1
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Similarly, substituting equation (11) into (20) and simplifying, we get 
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Substitute 
KTKT

f

f

1
,  


 and 
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b
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This simplifies to 
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Equation (25) gives the expression for the distribution particles for helium-3 particles which have a spin 

degeneracy of two.  

Also, substitute for 
jfn  in equation (28), to obtain 

1
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Equation (26) gives the most probable distribution particles for bosons (Helium-4) in the mixture. Where 

T  is the  temperature, K is the Boltzmann constant,
f is the chemical potential of the fermions and b is 

the chemical potential of the bosons. 

Combining equation (25) and (26) gives 
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Equation (27) gives an expression for the most probable distribution for a mixture of bosons and fermions 

with duo-spin degeneracy of two. 

 

Partition Function 

The partition function of a grand canonical ensemble where both bN  and 
fN  are variable can be derived 

from 
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Where Z  is the partition function, bN  denotes number of bosons, 
fN  number of fermions b is the 
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chemical potential of bosons, 
f is the chemical potential of fermions, T  is the temperature, K  is the 

Boltzmann constant.   is the dual energy of helium isotopes.  

Equation (28) gives the partition function of a grand canonical ensemble of a mixture of helium isotopes 

with a spin degeneracy of two. It ought to be understood that the partition function has two brackets: the 

first bracket consists of the difference of the chemical potential of bosons and fermions and a factor 2-

times which is due to interaction of bosons and fermions in the mixture. The second bracket comprises of 

f which means that fermions are not affected by the distribution of the bosons in the mixture because in 

whichever way the bosons are arranged or distributed, there should only be one fermion. 

 

Internal Energy 

For a grand canonical ensemble, internal energy E was derived as 
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RESULTS AND DISCUSSIONS 

Analysis 
In this study, we have applied data for a helium binary system as commonly used by Ayodo et al., (2004) 

to study trends and further undertake a comparative study with the experimentally observed data of the 

system. 

 

Table 1: Essential parameters for liquid helium-3 and helium-4  

  Liquid 3He Liquid 4He  

 

 
Volume (cm3) 40.00  28.00 

Density (gcm-3) 0.07  0.14 

 Mass (g) 2.80  3.82 

 

Although chemical potential is temperature dependent, at low temperatures, it assumes a nearly constant 

value given by the expression  

𝜇 =
𝜋2ħ

2

2𝑚
(

3Ɲ

𝜋𝑉
)

2
3⁄
          (30) 

Here, m is the molar mass of the species, V is its molar volume, and  is Avogadros number. 

The chemical potentials for bosons and fermions are then obtained as 

 𝜇𝑓 = 3.184 × 10−27 𝑒𝑉 and 𝜇𝑏 = 6.215 × 10−28𝑒𝑉    

In a four-level approximation, higher energy levels lie beyond the ionization potential of helium (≈79.02 

eV), Sakwa et al., (2004), where they experience no influence of the nucleus. 

 

Variation of Thermodynamic Quantities with Temperature 

Partition Function 

Using equation (28) the variation of partition function with temperature was studied in the temperature 

range 5K to 100K. The transition temperature of pure liquid Helium-4 is about 2.167, Ayodo (2002). The 

graph depicting the variation of the partition function with the temperature is shown in figure 1 below. 
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There is a gradual increase in the values of the partition function as the temperature of the system is 

increased. As the temperature is increased, fermions quickly shift to higher energy levels. Helium-3 shifts 

the transition temperature of the latter to a higher value Ayodo et al., (2004). 
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Figure 1: Variation of partition function with temperature in the range of 5K to 100K 

 

Internal Energy 

Equation (29) is used to compute the internal energy of the system at varying temperatures from 5K to 

100K at intervals of 5K. The variation of internal energy and temperature of the system is depicted in 

figure 2 below. 
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Figure 2: Variation of Internal Energy with Temperature in the temperature range of 5K to 100K 
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The internal energy approaches zero as temperature tends to zero.In the low temperature regime, particles 

occupy the lower quantum states. As the temperature is increased, fermions shift quickly to the higher 

states where they posses greater kinetic energy necessarily manifested as internal energy. The increase in 

internal energy at higher temperatures declines due to particle saturation. 

Conclusions 

We have shown that a pair of fermion is a boson because adding the two half integer spins give an integer 

spin. Therefore at low temperatures, fermions and bosons forms cooper pairs. The movement of this 

cooper pairs is necessitated by weak interaction of the particles in terms of the oscillation of the lattice. At 

high temperatures, the particles have a lot of energy and move past each other and this explains why this 

model of non interacting degenerate works so well. The partition function of this model, like others (Ryan  

et al.,2015), increases exponentially as temperature is increased forming a plateau at higher temperatures. 

This is because degeneracy inhibits formation of microstates so that even if the temperature is increased, 

fermions occupancy in any quantum state is limited to two. 

At low temperatures (below 5 K), the internal energy of the system approaches zero. In this range of 

temperatures, most particles are in the ZFC and consequently the internal energy is diminishingly small. 

These observations agree to a large extent with conventional results about entropy and internal energy for 

systems with high occupancy of the ZMS (Sakwa et al.,2013), increase in temperature result in an 

increase in internal energy as is normally the case in thermodynamics. 
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