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Abstract

Let X,Y be Banach spaces and consider the w′-topology (the dual

weak operator topology) on the space (L(X,Y ), ‖.‖) of bounded linear

operators from X into X with the uniform operator norm. Lw′
(X,Y )

is the space of all T ∈ L(X,Y ) for which there exists a sequence of

compact linear operators (Tn) ⊂ K(X,Y ) such that T = w′ − limnTn.
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Two equivalent norms,

‖|T‖| := inf{ sup

n
‖Tn‖ : Tn ∈ K(X,Y ), Tn

w′

→
T} and

‖T‖u := inf{ sup

n
{max{‖Tn‖, ‖T−2Tn‖}} : ‖ : Tn ∈ K(X,Y ), Tn

w′

→
T}

on Lw′
(X,Y ), are considered. We show that (Lw′

, |‖.‖|) and (Lw′
, ‖.‖u)

are Banach operator ideals.
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1. Introduction

Throughout this paper X and Y will be Banach spaces. The space of

bounded linear operators from X to Y is denoted by L(X, Y ) and the subspaces

consisting of all finite rank bounded linear operators, all compact linear opera-

tors and all weakly compact linear operators, are denoted by F (X, Y ), K(X, Y )

and W (X, Y ), respectively. The closed unit ball of a Banach space X is de-

noted by BX and the continuous dual space of X is denoted by X∗.

We follow the authors of the paper [3], calling a subspace X of a Banach

space Y an ideal in Y if the annihilator X⊥ of X is the kernel of a contractive

projection P on the (continuous) dual space Y ∗ of Y , whose range is isomorphic

to X∗. Since, by Hahn Banach Theorem such a projection has norm 1, it follows

that ‖idY ∗ − 2P‖ ≥ 1. Moreover, if the projection P exists on Y ∗ such that

ker P = X⊥ and ‖idY ∗ − 2P‖ ≤ 1 (i.e ‖idY ∗ − 2P‖ = 1 in this case), then X

is called a u-ideal (or unconditional ideal) in Y . This concept was introduced

by Casazza and Kalton (cf [2]) and the equality ‖idY ∗ − 2P‖ = 1 is equivalent

to requiring that if ξ ∈ X⊥, φ ∈ V := P (Y ∗), then ‖φ + ξ‖ = ‖φ − ξ‖.
The natural examples of u-ideals (with respect to their biduals ) are order
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continuous Banach lattices-although there are many examples of u-ideals which

are not Banach lattices. In a subsequent paper, the authors of [3] further

investigated u-ideals along with so called h-ideals, in which case it is required

that ‖φ + ξ‖ = ‖φ + λξ‖ for all ξ ∈ X⊥, φ ∈ V and all |λ| = 1. Much of

the paper [3] is devoted to a general study of u-ideal and h-ideals. However,

in section 8 of that paper, the authors find necessary conditions on a Banach

space X such that the space K(X) of compact operators is a u-ideal in the

space L(X) of bounded linear operators, showing that this is the case if X is

separable and has (UKAP) (unconditional compact approximation property,

i.e. if there exists a sequence (Kn) in K(X) such that
lim

n
Knx = x for all

x ∈ X and
lim

n
‖idX − 2Kn‖ = 1).

Johnson proved in [7] that if Y is a Banach space having the bounded

approximation property then the annihilator K(X, Y )⊥ in the (continuous)

dual space L(X, Y )∗ is the kernel of a projection on L(X, Y )∗. The range

space of the projection is isomorphic to the dual space K(X, Y )∗. K. John

showed in [5] that Johnson’s result is also true in case of any separable Pisier

space X = P and its dual Y = P ∗, both being spaces which do not have the

approximation property. This motivated his more general results in a later

paper,(cf [6]).

Following Kalton [8] we denote by w′ the dual weak operator topology on

L(X, Y ) which is defined by the linear functionals

T �→ e∗∗(T ∗f ∗), f ∗ ∈ Y ∗, e∗∗ ∈ X∗∗.

Although the weak topology of L(X, Y ) is in general stronger than w′, it

is shown by Kalton in [8] that w
′
-compact subsets of K(X, Y ) are weakly

compact. In particular,

• If (Tn) ⊂ K(X, Y ) is a w′-convergent sequence which converges to a

T ∈ K(X, Y ), then Tn → T in the weak topology of L(X, Y ).
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This result was used by K. John (in [6]) to show that if for each T ∈ L(X, Y )

there exists a sequence Tn ⊂ K(X, Y ) such that Tn → T in the dual weak

operator topology, then the annihilator K(X, Y )⊥ in L(X, Y )∗ is the kernel

of a projection on L(X, Y )∗. In the paper [1] an alternative (operator ideal)

approach is followed to prove similar (and more general) versions of John’s

results. In this paper we build on the results in [1] to show that (Lw′
, |‖.‖|)

and (Lw′
, ‖.‖u) are Banach operator ideals.

2. Operator ideal properties.

Definition 2.1: Let T ∈ L(X, Y ). T is said to have the w′-compact

approximation property (w′-cap) if there is a sequence (Tn) ⊂ K(X, Y ) such

that Tn

w′

→
T}. Let Lw′

(X, Y ) be the family of all T ∈ L(X, Y ) which have the

w′-compact approximation property.

An easy application of the Uniform Boundedness Theorem shows that

Lemma 2.2: If Tn → T in the w′-topology of L(X, Y ) then (Tn) is norm

bounded.

Let X, Y be fixed Banach spaces. For T ∈ Lw′
(X, Y ) we put

(∗) ‖|T‖| := inf{ sup

n
‖Tn‖ : Tn ∈ K(X, Y ), Tn

w′

→
T}.

Clearly, if T ∈ K(X, Y ), then ‖|T‖| = ‖T‖.
Refer to [9] and [4] for information in connection with operator ideals. In

particular we recall the following criteria for a subclass of the operator ideal

(L, ‖.‖) to be a complete operator ideal on the family of all Banach spaces.

Theorem 2.3: (cf. [9], 6.2.3, pp.91) Let U be a subclass of L with an


+-valued function α such that the following conditions are satisfied:

(i) If X, Y are Banach spaces, then a ⊗ y ∈ U(X, Y ) for all a ∈ X∗, y ∈ Y

and α(a ⊗ y) = ‖a‖‖y‖.

(ii) RST ∈ U(X, Y ) and α(RST ) ≤ ‖R‖α(S)‖T‖ whenever T ∈ L(X, X0), S ∈
U(X0, Y0) and R ∈ L(Y0, Y ).
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(iii) If S1, S2, ... ∈ U(X, Y ) and
∑∞

i=1 α(Si) < ∞, then S =
∑∞

i=1 Si = ‖.‖ −
limn

∑∞
i=1 Si ∈ U(X, Y ). And α(

∑∞
i=1 Si) ≤

∑∞
i=1 α(Si).

Then (U, α) is a complete normed operator ideal.

This important result is instrumental in proving that (Lw′
, |‖.|‖) is a Banach

operator ideal. This fact is proved in [2]. Both for the sake of completeness

and later reference, we discuss the proof here.

Theorem 2.4: ([1], Theorem 2.4) Let Lw′
denote the assignment which

associates with each pair of Banach spaces X, Y the vector space Lw′
(X, Y ).

And let ‖|.‖| be the assignment that associates with every pair of Banach spaces

X, Y and with every operator S belonging to Lw′
(X, Y ) the real number ‖|S|‖

in (∗). Then (Lw′
, ‖|.|‖) is a Banach operator ideal.

Proof : Notice that ‖.‖ ≤ ‖|.|‖ on Lw′
(X, Y ), where ‖.‖ is the uniform operator

norm on L(X, Y ). In fact for any ε > 0, let ‖x‖ ≤ 1, ‖y∗‖ ≤ 1 such that

‖T‖ − ε ≤ |y∗(Tx)| = limn|y∗(Tnx)| ≤ supn‖Tn‖ where (Tn) ⊂ K(X, Y ) such

that Tn

w′

→
T. Clearly ‖T‖ ≤ ‖|T |‖+ ε. To prove that (Lw′

, |‖.|‖) is a complete

normed ideal we make use of Theorem 2.3:

(i) ‖|IK‖| = 1 where IK ∈ Lw′
(K) is the identity map on the 1-dimensional

Banach space K.

(ii) Let T ∈ L(X, X0), S ∈ Lw′
(X, Y0) and R ∈ L(Y0, Y ). Then if Sn

w′

→
S,

Sn ∈ K(X, Y ) arbitrary, then RSnT
w′

→
RST . Hence

‖|RST |‖ ≤ sup

n
‖RSnT‖ ≤ ‖R‖( sup

n
‖Sn‖)‖T‖.

Since (Sn) was arbitrary chosen, it is clear that ‖|RST |‖ ≤ ‖R‖ ‖|S|‖ ‖T‖.

(iii) Now suppose that (Tn) ⊂ Lw′
(X, Y ) with

∑∞
i=1 ‖|Tn|‖ < ∞. We have to

show that
∑∞

i=1 Ti = ‖.‖ − limn

∑∞
i=1 Ti exists and is in Lw′

(X, Y ) with
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|‖∑∞
i=1 Ti|‖ ≤ ∑∞

i=1 |‖Ti|‖: Let Tn,i ∈ K(X, Y ) such that Tn,i

w′

→
n

Ti,

supn‖Tn,i‖ ≤ ‖|Ti|‖ + ε
2i . For arbitrary ‖x∗∗‖ ≤ 1, ‖y∗‖ ≤ 1

we have |x∗∗(T ∗
n,iy

∗)| ≤ |‖Ti|‖ + ε
2i , ∀ i and ∀n.

Hence
∑∞

i=1 x∗∗(T ∗
n,iy

∗) converges uniformly in n ∈ N, thus showing that

(∗)
∞∑
i=1

x∗∗(T ∗
i y∗) =

lim

n

∞∑
i=1

x∗∗(T ∗
i y∗).

It follows from the completeness of (L(X, Y ), ‖.‖) and (K(X, Y ), ‖.‖) and the

inequalities ‖Ti‖ ≤ |‖Ti|‖ for all i and ‖Tn,i‖ ≤ |‖Ti|‖ + ε
2i for all i, that∑∞

i=1 Ti ∈ L(X, Y ) and
∑∞

i=1 Tn,i ∈ K(X, Y ) for all n. Since (∗) holds for

arbitrary x∗∗ ∈ BX∗∗ and y∗ ∈ BY ∗ , it follows that
∑∞

i=1 Tn,i

w′

→
∑∞

i=1 Ti.

Hence
∑∞

i=1 Ti is in Lw′
(X, Y ) and

|‖
∑
i=1

Ti|‖ ≤ sup

n
‖

∞∑
i=1

Tn,i‖ ≤ sup

n

∞∑
i=1

‖Tn,i‖ ≤ ε +
∑
i=1

‖|Ti|‖.

This shows that
∑∞

i=1 ‖|Ti|‖ ≤ ∑∞
i=1 ‖|Ti|‖. By theorem 2.3, (Lw′

, |‖.‖|) is a

Banach ideal of operators.

Definition 2.5: Let T ∈ Lw′
(X, Y ) and suppose (Tn) ⊂ K(X, Y ) converges

in the dual weak operator topology of T . We denote by Ku((Tn)) the number

given by

Ku((Tn)) :=
sup

n ∈ N
{max{‖Tn‖, ‖T − 2Tn‖}},

which is a finite number because of the Uniform Boundeddness Theorem. The

u-norm on Lw′
(X, Y ) is then given by

‖T‖u := inf{Ku((Tn)) : T = w′ − lim

n
Tn, Tn ∈ K(X, Y )}.

It is clear from the definition that ‖|T |‖ ≤ ‖T‖u for all T ∈ Lw′
(X, Y ). Also, if

T ∈ K(X, Y ) then we may put Tn = T for all n, in which case Ku((Tn)) = ‖T‖,
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showing that ‖T‖u ≤ ‖T‖; therefore we have ‖|T |‖ = ‖T‖u = ‖T‖ for all

T ∈ K(X, Y ).

Theorem 2.6: (Lw′
, ‖.‖u) is a Banach operator ideal.

Proof: (i) It is clear that ‖.‖ ≤ |‖.‖| ≤ ‖.‖u on Lw′
(X, Y ) for all Banach

spaces X, Y and that the identity map on any 1-dimensional Banach space has

u-norm 1.

(ii) For T ∈ L(X, X0), R ∈ L(Y0, Y ), S ∈ Lw′
(X0, Y0) and (Sn) ⊂ K(X0, Y0)

such that Sn

w′

→
S, we have

‖RST‖u ≤ Ku((RSnT )) ≤ ‖R‖‖T‖ sup

n
{max{‖Sn‖, ‖S−2Sn‖}} ≤ ‖R‖‖T‖Ku((Sn)).

The sequence Sn ⊂ K(X0, Y0) being arbitrarily chosen to satisfy Sn

w′

→
S, it

follows that

‖RST‖u ≤ ‖R‖‖S‖u‖T‖.

(iii) Now suppose that (Tn) ⊂ Lw′
(X, Y ) with

∑∞
i=1 ‖Tn‖u < ∞. Since this

implies that
∑∞

i=1 ‖|Tn‖|u < ∞ and (Lw′
, |‖.‖|) is a Banach operator ideal, it

follows that
∑∞

i=1 Tn ∈ Lw′
(X, Y ). We still have to prove that

‖
∞∑
i=1

Tn‖u ≤
∞∑
i=1

‖Tn‖u.

To do so, we choose for arbitrary ε > 0 and each fixed i ∈ N, a sequence

(Tn,i) ⊂ K(X, Y ) such that Tn,i

w′

→
Ti if n → ∞ and

Ku((Tn,i)) ≤ ‖Ti‖u +
ε

2i
.

As in the proof of Theorem 2.4 it follows that

∞∑
i=1

Ti = w′ − lim

n

∞∑
i=1

Tn,i ∈ Lw′
(X, Y ).
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Therefore, we have

‖
∑
i=1

Ti‖u ≤ Ku((

∞∑
i=1

Tn,i)n)

=
sup

n

{
max

{
‖

∞∑
i=1

Tn,i‖, ‖
∑
i=1

Ti − 2

∞∑
i=1

Tn,i‖
}}

≤ sup

n

{
max

{ ∞∑
i=1

‖Tn,i‖,
∑
i=1

‖Ti − 2

∞∑
i=1

Tn,i‖
}}

≤
∑
i=1

Ku((Tn,i)) ≤
∑
i=1

‖Ti‖u + ε,

which proves that

‖
∑
i=1

Ti‖u ≤
∑
i=1

‖Ti‖u.

We conclude that (Lw′
, ‖.‖u) is a Banach operator ideal.

Corollary 2.7: The norms |‖.‖| and ‖.‖u are equivalent on Lw′
(X, Y ) for

all Banach spaces X, Y .
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