Spaces of compact operators and their dual spaces

Aywa Shem O.¹; Jan Fourie²

Professor of pure Mathematics, Kibabii University
Professor of Mathematics, North West University, South Africa

Abstract

The ω' -topology on the spaceL(X, Y) of bounded linear operators from the Banach spaceX into the Banach spaceY is discussed in [10]. Let $\mathcal{L}^{w'}(X, Y)$ denote the space of all $T \in L(X, Y)$ for which there exists a sequence of compact linear operators $(T_n) \subset K(X, Y)$ such that $T = \omega' - \lim_n T_n$ and let $|||T||| := \{ \sup n ||Tn|| : Tn \in K(X, Y), Tn \to w'T \}$. We show that $(Lw', ||| \cdot |||)$ is a Banach ideal of operators and that the continuous dual space $K(X, Y)^*$ is complemented in $(Lw'(X,Y), ||| \cdot |||)^*$. This results in necessary and sufficient conditions for K(X, Y) to be reflexive, whereby the spaces X and Y need not satisfy the approximation property. Similar results follow when X and Y are locally convex spaces.