

KIBABII UNIVERSITY

(KIBU)

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

END OF SEMESTER EXAMINATIONS YEAR TWO SEMSTER ONE

FOR THE BACHELORS DEGREE OF (COMPUTER SCIENCE)

COURSE CODE: CSC 211.

COURSE TITLE: DIGITAL ELECTRONICS II

DATE: 31/01/2022 TIME: 09.00 A.M - 11.00 A.M

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE AND ANY OTHER TWO (2) QUESTIONS

QUESTION ONE (COMPULSORY) [30 MARKS]

- a) Draw two truth tables illustrating the outputs of a half-adder, one table for the output and the other for the carry.
 [4 marks]
- b) Outline THREE ways that RAMs are different from ROM

[3 marks]

- c) A 5-bit D/A converter produces $V_{OUT} = 0.2 \text{ V}$ for a digital input of 0001. Find the value of V_{out} for an input of 11111. [4 marks]
- d) List <u>TWO</u> advantages of synchronous sequential logic circuit and <u>TWO</u> disadvantages of asynchronous sequential logic circuit? [2 marks]
- e) Draw the truth table for a 2-to-4 decoder (i.e., 2 control inputs, C₁, C₀, and 4 outputs, P₃, P₂, P₁, P₀) and show how it can be implemented using 2-input NOR and NOT gates. [4 marks]
- f) What is the difference between latch and flip flop? [3 marks]
- Draw a diagram to illustrate the 2-to-4 decoder can be used to implement a 4-to-1 multiplexer (i.e., 4 inputs, 2 control inputs and 1 output) using only NAND gates for the additional combinational logic required. [4 marks]
- b) Draw the truth table for an encoder that accepts a sign bit, S, and two magnitude bits X₀, X₁ and gives a three-bit output Y₂, Y₁, Y₀ that are the two's complement encoding of the input.
 [3 marks]
- i) Complete the following truth table that describes a single-bit full adder:

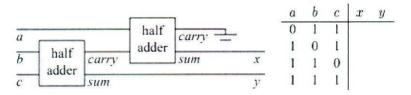
C_{IN}	A	В	C_{OUT}	sum
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	- 0	
1	0	1	1	
1	1	0	1	
1	1	1	1	

where C_{IN} is carry-in, A and B are the input data, C_{OUT} is carry-out and sum is the sum output. Remember to write your answer on the script paper, i.e., not on the question paper. [3 marks]

QUESTION TWO [20 MARKS]

- a) Assume the following values for the ADC clock frequency = 1 MHz; V_T =0.1mV; DAC has F.S. output = 10.23 V and a 10-bit input. Determine the following values.
 - i. The digital equivalent obtained for $V_A = 3.728 \text{ V}$.

[5 marks]


ii. The conversion time.

[3 marks]

iii. The resolution of this converter.

[2 marks]

b) Fill in the truth table at right for the following circuit. Ignore rows not included in the table. [4mks]

c) Using only four-bit adders, construct an eight-bit adder. Each four-bit adder has two four-bit inputs and one five-bit output. Your eight-bit adder should have two eight-bit inputs and a one eight-bit output (don't worry about the ninth output bit)

[6 marks]

QUESTION THREE (20 MARKS)

- a) Using two 2-input NOR gates illustrate how to implement an RS latch. Describe it's operation and give its truth table.
 [3 marks]
- b) With the aid of a diagram explain what a sequential circuit is. [4 marks]
- Outline <u>TWO</u> main differences between synchronous and asynchronous sequential logic circuit?
 [4 marks]

d) With the aid of a diagram, show how a Transparent D-Latch can be implemented using cross-coupled NOR gates and some additional combinational logic. What are the advantages of the Transparent D-Latch over the RS latch? [5 marks]

e) The truth table of a 2-to-4-line decoder is presented in the table below.

inputs		outputs				
A1	$\mathbf{A}0$	EN	S3	S2	S1	S0
X	X	0	0	0	0	0
0	0	1	0	0	0	1
0	1	1	0	0	1	0
1	0	1	0	1	0	0
1	1	1	1	0	0	0

What are the minimum sum-of-products equations for each output of the 2-to-4 line decoder? [4 marks]

QUESTION FOUR [(20 MARKS]

a) Outline <u>TWO</u> advantages and <u>TWO</u> disadvantages of R-2R ladder DAC.

[4 marks]

- b) What is the largest value of output voltage from an 8-bit DAC that produces 1.0V for a digital input of 00110010? [2 marks]
- c) A 2-bit binary adder sums two numbers, A_1A_0 and B_1B_0 to yield the unsigned result $Y_2Y_1Y_0$, where the zero subscript indicates the least significant bit (LSB).
 - (i) Write down the truth table for the required outputs Y₂, Y₁ and Y₀.[3 marks]
 - (ii) Using a Karnaugh map (K-map) or otherwise, give the simplified sum of products expression for Y₂.[3 marks]
 - (iii) Using a K map or otherwise, determine a simplified product of sums expression for Y₂ and show how the circuit can be implemented using only NOR gates (of any number of inputs). [4 marks]
- d) A 5-bit DAC has a current output. For a digital input of 101000, an output current of 10mA is produced. What will I_{OUT} be for a digital input of 11101? [4marks]

QUESTION FIVE (20 MARKS)

a)	Explain the function of a counter in sequential circuits.	[4 marks]
b)	Derive a circuit that implements an 8-to-3 binary encoder	[6 marks]
c)	Outline TWO types of each of ADC and DAC.	[4 marks]

d) State and briefly explain <u>THREE</u> performance parameters of D/A converters

[6 marks]