

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2021/2022 ACADEMIC YEAR
FOURTH YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND

BACHELOR OF SCIENCE

COURSE CODE:

MAA 423/MAT 426

COURSE TITLE:

FOURIER SERIES

DATE: 05/09/2022

TIME: 9:00 AM - 11:00 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION 1 ('30 MARKS)

a) Find the limit
$$\lim_{x \to 0} \left\{ \frac{\cos(x^6) - 1 + \frac{1}{12}x^{10}}{x^8} \right\}$$
 [5 Marks]

b) Determine whether the given functions are even, odd or neither

i)
$$f(x) = \sin\left(\frac{n\pi x}{L}\right)$$
 on $-L \le x \le L$ [2 Marks]
ii) $f(x) = \cos\left(\frac{n\pi x}{L}\right)$ on $-L \le x \le L$ [2 Marks]
 $(x) = x^2 + e^{6-x}$ on $-2 \le x \le 2$ [3 Marks]

ii)
$$f(x) = \cos\left(\frac{n\pi x}{L}\right)$$
 on $-L \le x \le L$ [2 Marks]

iii)
$$f(x) = x^2 + e^{6-x}$$
 on $-2 \le x \le 2$ [3 Marks]

c) Compute the Maclaurin series as far as x^6 term for the following functions

$$e^{-x}$$
, $x\sin(x)$, $\frac{\cos(x^2)}{x^2}$ [2 Marks]

d) The Fourier series for the function f defined by $f(x) = x^2$ on the interval $[-\pi, \pi]$ is known to be convergent. What do you understand by

i) period of
$$f$$
 [3 Marks]

f is periodic ii)

iii) periodic extension of
$$f$$
 [2 Marks]

iv) Fourier coefficients of expansion of
$$f$$
 [3Marks]

e) Give a sketch graph of three periodic extensions of f defined by $f(x) = x^2$ on the interval [-10,10][8 Marks]

QUESTION 2 (20MARKS)

One cycle of a periodic waveform y = f(x) of period 2π is defined by the below data. Assume that f(x) has a uniformly convergent Fourier series with

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \{a_n \cos(nx) + b_n \sin(nx)\}; \quad 0 \le x \le 2\pi.$$

Applying harmonic analysis

a) Determine the approximate function $Y = \hat{f}$ Fourier series for y = f(x) up to and including the 3rd harmonic. [12 Marks]

b) Predict
$$Y = \hat{f}(20^{\circ})$$
, $Y = \hat{f}(200^{\circ})$ [8 Marks]

Z ⁰	0	15	30	45	60	75	90	105	120	135	150	165	180	195	210	225	240
y(x)	1 5	17	20	22	23	23.4	24	21	20	15	8	5	3	3.2	4	6	9

x^{0}	255	270	285	300	315	330	345	
y(x)	10.3	11	11.6	10	10.8	11	11.5	

QUESTION 3 (20MARKS)

- a) Solve the heat equation $u_t = \alpha^2 u_{xx}$, 0 < x < 1, t > 0 with the Dirichlet boundary conditions u(t,0) = u(t,1) = 0, t > 0 and initial conditions $u(0,x) = g(x) = x^2$, $0 \le x \le 1$ [8 Marks]
- b) Solve the differential equation $y'' 144y = \begin{cases} x & 0.0 < x < 5 \\ -x & 0.5 \le x < 10 \end{cases}$, [12 Marks]

QUESTION 4 (20MARKS)

Given real valued function y = f(x) for which

$$f(x) = \begin{cases} 0 & -\pi < x < \pi \\ -x & 0 < x < \pi \end{cases}$$

$$f(x) = f(x + 2\pi)$$

(a) Sketch the graph of f(x) over the interval $-4\pi < x < 4\pi$

[8 marks]

(b) State period of f(x)

[3 marks]

(c)Deduce that

$$f(x) = \frac{\pi}{4} + \frac{2}{\pi} \left\{ \cos x + \frac{1}{9} \cos 3x + \frac{1}{25} \cos 5x + \frac{1}{49} \cos 7x \dots \right\} + \sin x - \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x - \frac{1}{4} \sin 4x \dots$$
[9 marks]

QUESTION 5 (20MARKS)

(a) Consider the function defined on $[0, \pi)$ by

$$f(x) = \begin{cases} x & 0 \le x < \frac{\pi}{2} \\ \pi - x & \frac{\pi}{2} \le x < \pi \end{cases}$$

Obtain the Fourier half-range sine for this function f(x).

[14 marks]

Sketch the anti-symmetric odd periodic extension of f(x) on (- π , π)

(b) Let f(x) be periodic function with period 2π with

$$f(x) = \sin^2 x, -\pi \le x \le \pi$$

- (i) State giving reasons whether f(x) is odd or even.
- (ii) Sketch f(x) over the interval $[-16\pi, 16\pi]$
- (iii)Obtain the Fourier series expansion for f(x)

[6 marks]