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Ž .A scalar sequence � is said to be a p-summing multiplier of a Banach spacei
� � � pE, if Ý � x � � for all weakly p-summable sequences in E. We study somei�1 i i

Ž .important properties of the space m E of all p-summing multipliers of E,p
consider applications to E-valued operators on the sequence space l p, and extend
this work to general ‘‘summing multipliers.’’ The case p � 1 shows close resem-

Ž .blance to the work of B. Marchena and C. Pineiro Quaestiones Math., to appear ,˜
where the results originated from the authors’ interest in sequences in the ranges
of vector measures. � 2001 Academic Press

INTRODUCTION AND NOTATION

� 4 Ž .Let E, F be Banach spaces over � � �, � . L E, F denotes the space
Ž .of all bounded linear operators between E and F, whereas K E, F

denotes the space of all compact linear operators between E and F.
Ž .L E, � is denoted by E* and when convenient we use the notation

² : Ž .x, x* for x* x where x � E, x* � E*. The closed unit ball in E will be
Ž . Ž .denoted B . Sequences in E will be denoted x , y , etc., and we letE i i

x � n � x , x , . . . , x , 0, 0, . . . ,Ž . Ž . Ž .i 1 2 n

x � n � 0, 0, . . . , 0, x , x , . . . .Ž . Ž . Ž .i n n�1

Ž . ŽA vector space � whose elements are sequences � of numbers realn
.or complex is called a sequence space. � is said to be normal if whenever
Ž . Ž . � � � �it contains � , it also contains all sequences � with � � � for alln n n n
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n � �. To each sequence space � we assign another sequence space ��,
Ž .its Kothe-dual, which is the set of all sequences � for which the series¨ n

� Ž .Ý � � converge absolutely for all � � �.n�1 n n n
A sequence space � is said to be perfect if ���� �. � is said to be

Ž . Ž .symmetric if � � � if and only if � � � for all permutations � ofi � Ž i.
the positive integers.

A Banach sequence space � is said to be a BK-space if each coordinate
Ž .projection mapping � � � is continuous.n i

Ž .Let e � � , with � � 1 if i � n and � � 0 if i � n. In a dualn i, n i i, n i, n
normed sequence space �* we will use the notation e� for e . A normedn n
sequence space is said to have the AK-property if all its elements can be

Ž .approximated by their sections, that is, if each element � in thei
Ž . Ž .Ž . Ž .Ž .sequence space satisfies � � lim � � n , where � � n �i n�� i i

Ýn � e . A BK-space � has the AK-property if and only ifi�1 i i
� 4e : n � 1, 2, . . . is a Schauder basis for �, that is, if and only ifn

�Ž .Ž ..�lim � � n � 0. If � is a normal BK-space with AK , then�n�� i
� 4e : n � 1, 2, . . . is an unconditional basis for �, called the standardn
coordinate basis or the unit vector basis of �. In this case a standard
argument shows that �� is algebraically isomorphic to the continuous
dual space �* with respect to the obvious duality. We call � a DAK space
if both � and �� have the AK property.

If not otherwise stated, all scalar sequence spaces � � l� will through-
out be assumed to be normal symmetric BK-spaces with the AK-property.

� �In this case we may assume that e � 1 for all n � �. For information�n
� 	on scalar sequence spaces we refer to 11 .

The following standard sequence spaces will be referred to:

� Žw, the vector space with respect to coordinate wise vector opera-
. Ž .tions of all complex and real scalar sequences;
� 	 
 w, the space of all sequences with only a finite number of

non-zero terms;
�

�l , the space of all bounded sequences;
� c , the space of all null sequences;0

�
pl , 1 � p � �, the space of all absolutely p-summable sequences.

Ž . �Ž . Ž� �. 4The vector sequence space � E � x 
 E : x � � is a com-s i i
plete normed space with respect to the norm

� � � �� x � x .Ž . Ž .Ž . �� i i

ŽŽ .. ŽŽ .. pWe put � x � � x when � � l , the Banach space of p-absolutely� i p i
Ž .summable scalar sequences with 1 � p � � .
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Ž . �Ž . Ž² :. 4The vector sequence space � E � x 
 E : x , a � �, 
a � E*w i i
is a complete normed space with respect to the norm

� ² : �� x � sup x , a .Ž . Ž .Ž . �� i i
� �a �1

p Ž .We put � � � when � � l with 1 � p � � .p �

The vector sequence space

� E � x � � E : x � � � lim x , . . . , x , 0, . . .Ž . Ž . Ž . Ž . Ž .½ 5c i w i � 1 n
n��

� x � � E : � x � n � 0 if n � �� 4Ž . Ž . Ž . Ž .Ž .i w � i

Ž . Ž .is a closed subspace of � E . On � E we will consider the inducedw c
Ž .subspace norm, inherited from � E .w

Ž . �Ž � . Ž² �:.The vector sequence space � E* � x 
 E* : x, x � �, 
 x �w i i
4E is a complete normed space with respect to the norm

� � ² �: �� x � sup x , x .Ž . Ž .Ž . �� i i
� �x �1

p Ž .We put � � � when � � l with 1 � p � � .p �

The vector sequence space

� E* � x� � � E* : x� � � � lim x� , . . . , x� , 0, . . .Ž . Ž . Ž . Ž . Ž .½ 5c i w i � 1 n
n��

� x� � � E* : � x� � n � 0 if n � �� 4Ž . Ž . Ž . Ž .Ž .i w � i

Ž . Ž .is a closed subspace of � E* . On � E* we will consider the inducedw c
Ž .subspace norm, inherited from � E* .w

� 	 Ž .It follows from 9, Proposition 2 that the continuous dual space � E *c
Ž � .can be identified with the vector space of all sequences x in E* suchi

� �² �: � Ž . Ž .that Ý x , x � � for all x � � E .i�1 i i i w
� 	 Ž . �Ž . �It is proved in 6 that x � � E if and only if Ý � x converges ini w i�1 i i

Ž .E for every � � � and thati

�

�� x � sup � x .Ž .Ž . Ý� i i i
Ž .� �B i�1i �

� 	Moreover, the following characterisations can also be found in 6, 8 :

THEOREM 0.1. Consider a Banach space E.

Ž .a Let � be a Banach sequence space with the AK-property. Then
�Ž . Ž .� E is isometrically isomorphic to L �, E . The isometry is gi�en byw

Ž . ŽŽ .. �x � T , where T  � Ý  x .n Ž x . Ž x . i i�1 i in n
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Ž .b Let � be a Banach sequence space with the AK-property such that
� �Ž . Ž .� has AK. Then � E is isometrically isomorphic to K �, E . Thec

Ž .isometry is defined as in a .
Ž .c Let � be a Banach sequence space with the AK-property. Then

Ž . Ž .� E* is isometrically isomorphic to L E, � . The isometry is gi�en byw
Ž � . Ž² �:.� �x � T , where T x � x, x .n Ž x . Ž x . nn n

Ž .d Let � be a Banach sequence space with the AK-property. Then
�Ž . Ž .� E* is isometrically isomorphic to K E, � . The isometry is defined asc
Ž .in c .

The following well known normed operator ideals will be considered in
this work:

� Ž � �. Ž .FF, � , where T � FF X, Y if and only if T is a finite rank
� �bounded linear operator and � is the usual uniform operator norm.

Ž .Recall that T � FF X, Y if and only if T has a representation of the form
T � Ýn a � x where a � X* and x � Y. Also, recall that the trace ofi�1 i i i i

n � Ž .S � Ý x � x � FF X, X is the numberi�1 i i

n
�² :tr S � x , x ,Ž . Ý i i

i�1

which is independent of the representation of S.

� Ž . Ž .NN, � , where T � NN X, Y if and only if T is a nuclear operator;1
i.e., T has a representation

�
�² :Tx � � x , x y ,Ý i i i

i�1

Ž . 1 Ž � . Ž .where � � l , x is bounded in X*, and y is bounded in Y. Herei i i

�

� �� T � inf � ,Ž . Ý1 i
i�1

where the infimum is extended over all such representations for which
� � � � �x � 1 and y � 1 for all i.i i

� Ž . Ž .II , i , where T � II X, Y if and only if T is an integral operator,1 1 1
i.e., if and only if there exists � � 0 such that

� � � �tr TS � � S , 
S � FF Y , X .Ž . Ž .

Ž .The integral norm i T equals the smallest of all numbers � � 0 admissi-1
ble in these inequalities.
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� Ž . Ž .PP , � , where T � PP X, Y if and only if T is a p-absolutelyp p p
Ž . pŽ . Ž . pŽ .summing operator, i.e., if and only if Tx � l Y for all x � l X .i s i w

Ž .The p-summing norm � T of T equals the operator norm of thep
bounded linear operator

l p X � l p Y :: x � Tx ;Ž . Ž . Ž . Ž .w s i i

i.e.,

1�p�
p� �� T � sup Tx : � x � 1 .Ž . Ž .Ž .Ýp i p i½ 5ž /

i�1

We recall some information in connection with vector measures.

DEFINITION 0.2. A function G from a field � of subsets of a set � to a
Banach space X is called a finitely additive vector measure if whenever A1
and A are disjoint members of � then2

G A  A � G A � G A .Ž . Ž . Ž .1 2 1 2

If in addition

� �

G A � G AŽ .� Ýn nž /
n�1 n�1

Ž .in the norm topology of X for all sequences A of pairwise disjointn
members of � such that �� A � �, then G is termed a countablyn�1 n
additive vector measure.

DEFINITION 0.3. Let G: � � X be a vector measure. The variation of
� �G is the extended non-negative function G whose value on a set A � �

is given by

� � � �G A � sup F B ,Ž . Ž .Ý
� B��

where the supremum is taken over all partitions � of A into a finite
Žnumber of pairwise disjoint members of �. If the total variation of G that

� �Ž ..is, G � is finite, then G is called a measure of bounded variation.

DEFINITION 0.4. The range of a vector-valued measure is a set of the
form

rg G � G A : A � � ,� 4Ž . Ž .

where � is a �-field of sets and G is a countably additive measure on �
with values in a Banach space.
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The Pietch integral operators are defined as follows:

� Ž .T � PPg X, Y if and only if there exists a Y-valued countably
Žadditive vector measure G of bounded variation defined on the Borel for

.the weak*-topology sets of the closed unit ball B of X* such that forX *
each x � X we have

T x � x* x dG x* .Ž . Ž . Ž .H
BX*

Ž .The space PPg X, Y becomes a Banach space under the norm

� � � �T � inf G B ,� 4Ž .pint X *

where the infimum is taken over all measures G that satisfy the above
definition.

In Section 1 of the present paper we introduce the concept p-summing
Ž .multiplier for a Banach space E. This is a scalar sequence � such thati

Ž .the coordinatewise products of � with the weak p-summable sequencesi
in E are absolutely p-summable. We define a natural norm on the scalar

Ž .sequence space m E of all p-summing multipliers of E and prove somep
Ž Ž . Ž . .inclusion theorems such as m E � m E if 1 � p � q � � . The inclu-p q

Ž . Ž .sion m E** � m E is easy to verify; however, it follows from ourp p
Ž . Ž . Ž .discussion in Section 1 that indeed m E � m E** . Let � be ap p i

bounded scalar sequence. Our discussion in Section 1 also shows that the
1 1p �Ž . Ž . Žoperators l � E: � � Ý � � x with � � 1 are integral ori i�1 i i i p q

. Ž .nuclear for all absolutely q-summable sequences with 1 � q � � if and
Ž . Ž .only if � � m E* .i p

Ž . ŽIn Section 2 we consider the relation of m E which is denoted by1
Ž . .m E and whose elements are called absolutely summing multipliers of E

Ž . pwith the Orlicz property, find m E for infinite dimensional L -spaces,
and discuss the connection of our work on absolutely summing multipliers

� 	 Ž .with work in 12 . It is shown that for a given bounded scalar sequence �i
Ž � .and all norm null sequences x 
 E*, the operatorsi

�
�1l � E*: � � � � xŽ . Ýi i i i

i�1

Ž . Ž .are nuclear if and only if � � m E .i
The work of Section 1 is extended in Section 3 to obtain results for so

Ž .called �, � -summing multipliers. The last part of Section 3 is devoted to a
study of properties on the underlying sequence and Banach spaces that

Ž . Ž .will ensure that the Banach sequence space m E of �, � -summing� , �

multipliers has the AK-property. A general necessary and sufficient condi-
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Ž .tion for m E to have the AK-property is proved. From this general� , �

Ž .�condition it is for instance possible to conclude that m E has AK if� , �

Ž . Ž .both E and � are reflexive and L �, E � K �, E .

1. p-SUMMING MULTIPLIERS

Ž .DEFINITION 1.1. Let 1 � p � �. A scalar sequence � is called ai
� � � pp-summing multiplier for a Banach space X, if Ý � x � � for alln�1 n n

Ž . pŽ .sequences x � l X . Putn w

�
p p� �m X � � � � : � x � �, 
 x � l X .Ž . Ž . Ž . Ž .Ýp n n n n w½ 5

n�1

Ž . � Ž . pŽ .m X is a subspace of l . Since each x � l X is a norm boundedp i w
p Ž .sequence in X, it is also clear that l � m X .p

Ž .On the vector space m X we define a normp

1�p�
p p� � � � � �� � sup � x ,Ž . Ýp , pi n nž /ŽŽ ..� x �1 n�1p i

Ž . Ž .which is well defined because for each � � m X this is the operatori p
Ž .norm of the bounded having closed graph linear operator

T : l p X � l p X :: x � � x .Ž . Ž . Ž . Ž .� w s i i i

Ž .m X is a complete normed space with respect to the above operatorp
norm.

We first prove an inclusion relation between the different p-summing
multiplier spaces of a fixed Banach space.

Ž . Ž .THEOREM 1.2. If 1 � p � q � � then m X � m X . Moreo�er, ifp q
Ž . Ž . �Ž .� �Ž .�� � m X , then � � � .q, q p, pi p i i

Ž . Ž . Ž . q Ž .Proof. Let p � q and fix � � m X . For an arbitrary x � l X ,n p i w
put

� � Žq� p.�1 � � Žq� p.�1� � � x .i i i
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1 1 p q � p qSince � � � � � 1, we haveŽ .q�p q� q � p q q q

1�pn
q q� � � �� xÝ i iž /

i�1

1�pn
p p� � � �� � � xÝ i i iž /

i�1

Ž .q�p �qn
Ž .q� q�pp� �� � sup �Ž . Ž .Ýp , pi iž /

� �x* �1 i�1

1�pp�qn
q�pp�² : �� x , x*Ž .Ý iž /

i�1

Ž .1�q q�p �p qn n
q p q�Žq�p.� � �² : �� � sup x , x* �Ž . Ý Ýp , pi i iž / ž /

� �x* �1 i�1 i�1

Ž . Ž .1�p � 1�qn
q q� � � � � �� � � x � n � x .Ž . Ž . Ž .Ž . Ýp , pi q i i iž /

i�1

Thus it follows that

1�qn
q q� � � � � �� x � � � x � nŽ . Ž . Ž .Ž .Ý p , pi i i q iž /

i�1

� �� � � x for all n � �.Ž . Ž .Ž .p , pi q i

Therefore

1�q�
q q� � � � � �� x � � � x � �Ž . Ž .Ž .Ý p , pi i i q iž /

i�1

Ž . q Ž . Ž . Ž . Ž .for all x � l X . Thus � � m X . The norm inequality for � �i w i q i
Ž .m X is also clear from the last inequality.p

It is easy to verify the following

LEMMA 1.3. If a Banach space X is topologically isomorphic to a closed
subspace of a Banach space Y, then

m Y � m X .Ž . Ž .p p
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The proof of the following result is both a generalisation and adjustment
� 	of 12, proof of Theorem 1 , where a similar result is proved for a sequence

Ž Ž .space � which is in fact the same as the space m X* �more about thisX 1
.will be said in Section 2 .

Ž . Ž .THEOREM 1.4. Let � be a bounded scalar sequence. Then � �i i
Ž . p Ž . �m X* if and only if the operator l � X : � � Ý � � x is integralp i i�1 i i i

1 1qŽ . Ž .for all sequences x � l X . Here 1 � p � �, � � 1.i s p q

Ž . Ž . Ž p. pŽ . Ž .Proof. Let � � m X* . Using K X, l � l X* cf. Theorem 0.1 ,i p c
Ž p. pŽ .define P: K X, l � l X* bys

�
� �P x � e � � x .Ž .Ý n n n nž /

n�1

Then P is linear and bounded with

� �
� �� � � �P x � e � � x � e .Ž .Ý Ýp , pn n n n nž /

n�1 n�1

Since l p has the metric approximation property, the dual operator

q p p � 	P*: l X** � K X , l * � II l , X** cf. 10, p. 449Ž . Ž . Ž . Ž .s

Ž p .is bounded into the Banach space II l , X** . Also,

�
�� � ��P* x � e � � x .Ž .Ž . Ýn n n n

n�1

� �� Ž p . Ž �� . qŽ .Hence Ý e � � x � II l , X** for all x � l X** .n n n n n s
ŽŽ .. � � Ž p . Ž .In particular P* x � Ý e � � x � II l , X** for all x �n n�1 n n n n

qŽ . Ž � .Ž p.l X . However, Ý e � � x l 
 X ; i.e.,s n n n n

� p q � 	e � � x � II l , X , 
 x � l X cf. 4, p. 233 .Ž . Ž . Ž . Ž .Ý n n n n s
n

Ž . �Conversely, let � � l be given. Suppose the operatori

l p � X : � � � � xŽ . Ýi i i i
i

Ž . qŽ .is integral for all x � l X . Definei s

Q : l q X � II l p , X :: Q x � e� � � x � II l p , X .Ž . Ž . Ž . Ž .Ž . Ýs n n n n
n
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q Ž p. Ž �Since l � l * has the metric approximation property, it follows cf. 10,
	. Ž p . Ž p .p. 410 that NN l , X is isometric to a subspace of II l , X . Now

n
�Q x , x , . . . , x , 0, 0, . . . � e � � xŽ .Ž . Ý1 2 n i i i

i�1

Ž . qŽ .is a nuclear operator for all n � � and x � l X . From the continuityi s n
Ž . Ž . Ž .of Q having closed graph and the fact that x , x , . . . , x , 0, 0, . . . � x1 2 n i

�
qŽ . Ž qŽ .. Ž p .in the norm of l X , it follows that Q l X 
 NN l , X . Hences s

Ž p.Ž Ž p . . pŽ .Q*: L X, l � NN l , X * � l X* is bounded.s
isomp pŽ . Ž .Using l X* � L X, l , it follows via trace duality thatw

Q* x� � � x� for all x� � l p X* .Ž . Ž . Ž . Ž .Ž .n n n i w

p p� � p� � � � Ž . Ž . Ž . Ž .Therefore Ý � x � �, 
 x � l X* ; i.e. � � m X* .n n n n w n p

A careful study of the last proof reveals that
1 1�Ž .THEOREM 1.5. Let � � l and 1 � p � �, � � 1. The followingn p q

are equi�alent:

Ž . Ž . Ž .a � � m X* .n p

Ž . � p Ž . qŽ .b Ý e � � x : l � X is integral for all x � l X .n n n n i s

Ž . � p Ž . qŽ .c Ý e � � x : l � X is nuclear for all x � l X .n n n n i s

1 1�Ž .COROLLARY 1.6. Let � � l and 1 � p � �, � � 1. The follow-n p q

ing are equi�alent:

Ž . Ž . Ž .a � � m X** .n p

Ž . � � p Ž � . qŽ .b Ý e � � x : l � X* is integral for all x � l X* .n n n n i s

Ž . � � p Ž � . qŽ .c Ý e � � x : l � X* is nuclear for all x � l X* .n n n n i s

1 1Ž . Ž .LEMMA 1.7. Let � � m X and let � � 1, 1 � p, q � �. Con-i p p q

sider the bounded linear operator
�

�q pP : K l , X � l X : e � x � � x .Ž . Ž . Ž .Ýs n n n n
n�1

qŽ . Ž q.P* maps l X* into NN X, l ands

�
� � � pP* x * � � e � x � NN l , X*Ž . Ž .Ž .Ž . Ýi i i i

i�1

Ž � . qŽ .for all x � l X* .i s

Proof. The linear operator P is clearly bounded, since

� �� � x � � � x .Ž . Ž . Ž .Ž . Ž .p , pp i i i p i
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Therefore

P*: l q X* � K l q , X * � II X , l qŽ . Ž . Ž .s

Ž q . Ž q.is bounded. The isometry K l , X * � II X, l is defined by trace duality
Ž � 	.cf. 10, p. 449 . Also,

� �
� � � �² : ² :P* x , e � x � x , � x � � x x ,Ž . Ž . Ž . Ž .Ž . Ý Ýi n n i n n i i i

n�1 i�1

Ž . pŽ . Ž � . qŽ .for all x � l X . Fix x � l X* and leti c i s

T : X � l q : x � � x� x � k .Ž . Ž .Ž .k n n

For each k � �, T is bounded and T � Ýk � x� � e . Nowk k n�1 n n n

� k
� �tr T � e � x � � x x ,Ž .Ý Ýk n n j j jž /

n�1 j�1

so that

� � �
� � � �² : ² :P* x , e � x � � x x � lim T , e � xŽ . Ž .Ž . Ý Ý Ýi n n i i i k n n

kn�1 i�1 n�1

Ž . pŽ .for all x � l X . This shows that for all x � X, we havei c

�
� � qP* x x � � x � e x � l .Ž . Ž . Ž .Ž . Ýi n n nž /

n�1

q Ž . Ž q.Since l has the metric approximation property, NN X, l is isometric to
Ž q. Ž � 	.a subspace of II X, l cf. 10, p. 410 . The continuity of P* thus implies

that

lim P* x� � n � P* x� � NN X , l q ,Ž . Ž . Ž . Ž .Ž . Ž .i i
n

ŽŽ � .Ž .. n � Ž q.whereby each P* x � n � Ý � x � e is in NN X, l . The duali i�1 i i i
Ž � 	.operator is also nuclear cf. 10, p. 379 ; thus

P* x� * � NN l p , X* .Ž . Ž .Ž .Ž .i

Moreover,
�

� � �P* x * � � e � x .Ž .Ž .Ž . Ýi i i i
i�1
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It follows from Lemmas 1.3 and 1.7 and Corollary 1.6 that

PROPOSITION 1.8. Let X be a Banach space and 1 � p � �. Then

m X � m X** .Ž . Ž .p p

Ž .2. THE SEQUENCE SPACE m E

� 	In 7 , Fourie used the name absolutely summing multiplier for what is, in
the context of the previous section, a 1-summing multiplier. We therefore
agree to henceforth refer to ‘‘absolutely summing multiplier’’ instead of
‘‘1-summing multiplier.’’

Ž .DEFINITION 2.1. A sequence  � � is called an absolutely summingi
Ž . Ž .multiplier of E if  x is absolutely summable in E whenever x isi i i

Ž . 1Ž . Ž . 1 Ž .weakly absolutely summable in E; hence  x � l E for all x � l E .i i s i w

The scalar sequence space of all absolutely summing multipliers of E is
Ž . Ž Ž .denoted by m E instead of m E , as would follow from the notation in1

. 1 Ž . 1Ž .Section 1 . Clearly, if E has finite dimension then l E � l E , so thatw s
Ž . � Ž . Žm E � l . For all Banach spaces E, m E is a perfect space in the sense

. 1 Ž . 2of Kothe and if E is infinite dimensional then l � m E � l , the last¨
Žinclusion following from the well known Dvoretzky�Rogers theorem as is

� 	.shown in 7 .
Ž .Recall that a sequence x 
 E is said to be unconditionally summablen

if Ý x converges in E, regardless of the permutation � of the indices.n � Žn.
� 	We refer to 3, Theorem 8, p. 45 for a proof of the fact that each

Ž . 1 Ž .x � l E is unconditionally summable if and only if E does not containi w
Ž . 2a copy of c . There are many Banach spaces E for which m E � l ;0

actually it is easy to precisely characterise those spaces for which this
property holds. Recall the Orlicz property:

Ž � 	.DEFINITION 2.2 cf. 3, p. 188 . A Banach space E is said to have the
Orlicz property if all unconditionally summable sequences in E are in the

2Ž .space l E of 2-absolutely summable sequences.s

There are numerous examples of Banach spaces having the Orlicz
Ž � 	.property. For instance, by a result of B. Maury cf. 3, p. 188 this property

characterises Banach lattices with cotype 2. All Banach spaces having
cotype 2 have the Orlicz property. Hence if E has type 2, then E* has the
Orlicz property. Since the Banach lattice c has no finite cotype, it is clear0
from the above discussion that c does not have the Orlicz property.0
Hence it is a necessary condition for a Banach space with the Orlicz
property not to contain a copy of c .0



AYWA AND FOURIE178

We are now ready to characterise the Banach spaces for which the space
of absolutely summing multipliers is l 2.

THEOREM 2.3. Let E be an infinite dimensional Banach space. Then
Ž . 2m E � l if and only if E has the Orlicz property.

Ž . 2 Ž . 1 Ž . � � � �Proof. Let m E � l . Then if x � l E , it follows that Ý � xn w n n n
Ž . 2 Ž� �. Ž 2 .� 2� � for all � � l . Thus x � l � l .n n

Conversely, suppose E has the Orlicz property. From the above discus-
Ž . 1 Ž .sion it is clear that each x � l E is unconditionally summable; thusi w

1 Ž . 2Ž . � � � � � Ž . 1 Ž . Ž .l E � l E . Hence Ý � x � � for all x � l E and all � �w s i�1 i i i w i
2 2Ž .l . Therefore we have m E � l .

Ž . 2Remark. Since both m E and l are BK-spaces, it follows in particular
that they are also topologically isomorphic if E has the Orlicz property.

The Banach spaces which contain isomorphic copies of c are excluded0
Žby the Orlicz property. But it is easily verified using the fact that

Ž . 1 Ž .. Ž . 1 Ž .e � l c that m c � l . Thus it follows from Lemma 1.3 that m Ei w 0 0
� l1 for all Banach spaces E which contain isomorphic copies of c .0

Ž . q ŽAdjusting the proof of 2.3, we obtain conditions for m E � l with
.1 � q � 2 to hold:

PROPOSITION 2.4. Let 1 � q � 2. Suppose E is an infinite dimensional
Banach space such that

Ž . Ž . p Ži there exists a real number K � 0 such that for all � � l withi
1 1 1. Ž . Ž . � � � �� � 1 there exists x � l E with � � K x for all i;i w i ip q

Ž . 1 Ž . pŽ .ii l E � l E .w s

Ž . q Ž . qThen m E � l . Being BK-spaces, it follows that the norms on m E and l
are equi�alent in this case.

Ž � 	. Ž .From a result of J. P. Kahane cf. 3, p. 141 it follows that property ii
p Ž .is satisfied by Banach spaces of cotype p. The space l with 2 � p � � is

Ž . Ž .easily seen to satisfy both the properties i and ii . So we may conclude
1 1p qŽ .that m l � l where � � 1. Moreover, we havep q

PROPOSITION 2.5. Let E be an infinite dimensional L p-space, where
1 1p sŽ . � 41 � p � �. Then m L � l where s � min 2, q , with � � 1.p q

Proof. When 1 � p � 2, the space E has cotype 2. Thus by Theorem
Ž . 2 Ž .2.3 we have m E � l . For 2 � p � � the property ii in 2.4 is satisfied

by Kahane’s result, since E has cotype p in this case. This also follows
� 	 pfrom 5, Corollary 10.7, p. 200 . Furthermore, l is topologically isomor-

phic to a closed subspace of E; thus there is an isomorphism I: l p � E
Ž . �Ž .� � ŽŽ ..�into E and a number K � 0 such that � � K I � for allpi i
Ž . p Ž . p Ž . � �� � l . Let � � l . Put x � I � e , for i � 1, 2, . . . . Then � �i i i i i i
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� � Ž . 1 Ž . Ž . 1 Ž p. Ž .K x for all i and x � l E since � e � l l . Thus the property ii i w i i w
Ž p. q Ž .in Proposition 2.4 holds. We have m L � l . When p � �, then m E

1� l , since then E contains an isomorphic copy of c .0

From Lemma 1.3 follow some interesting observations, which we sum-
marise in the following

PROPOSITION 2.6. Let E be a closed subspace of the Banach space F.
Then

Ž . Ž . Ž .a If E is complemented in F, then m F � m F�E .
Ž . Ž . Ž .b If E is complemented in F, then m F* � m E* .
Ž . Ž . Ž �. ŽŽ . .c m F* � m E � m F�E * .

For a fixed Banach space X, the sequence space � is defined asX
follows:

Ž � 	. Ž .DEFINITION 2.7 Marchena and Pineiro 12 . A scalar sequence �˜ i
Ž .belongs to � if and only if for every null sequence x in X, theX i

Ž .sequence � x lies in the range of some X-valued measure with boundedi i
variation.

� 	Following is one of the main results in 13 :

� 	THEOREM 2.8 13, p. 3329 . Let X be a Banach space. For a bounded
Ž . Ž . 1sequence x in X, consider the linear operator T : � � l � �� x � X.n n n n

The following assertions hold:

Ž . Ž .i x is in the range of an X-�alued b�-measure if and only if T isn
Pietsch-integral.

Ž . Ž . Žii x lies inside the range of a �ector b�-measure that is, there existn
a Banach space X , an isometry J: X � X , and a b�-�ector measure0 0

Ž . Ž . .G: � � X so that J x � rg G , 
n � � if and only if T is 1-summing.0 n

Ž . Ž .iii x lies in the range of an X**-�alued b�-measure if and only if Tn
is integral.

Ž � 	.Applying Theorem 2.8, Marchena and Pineiro proved in 12 the˜
following characterisation of the sequence space � :X

� 	 Ž .THEOREM 2.9 12, Theorem 1 . Let X be a Banach space and let � ben
Ž . � � � � � �a bounded scalar sequence. Then � � � if and only if Ý � xn X i�1 i i

con�erges for all weakly unconditionally Cauchy series Ý x� in X*.n n

Clearly, the last result shows that

Ž .PROPOSITION 2.10. For any Banach space X we ha�e m X* � � ; i.e.,X
Ž . Ž .a bounded scalar sequence � is in m X* , if and only if for all nulli

Ž . Ž .sequences x in X the sequence � x is in the range of some X-�aluedi i i
measure with bounded �ariation.
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Realising the relationship in 2.10, several results in connection with the
Ž � 	. Žspace � in 12 now follow easily from corresponding results with easyX

. Ž .proofs for the space m X* , some of which are discussed in Aywa’s thesis
Ž � 	.cf. 1 �and of course, vice versa, some properties in connection with
Ž . � 	m X* can be obtained from 12 . As a matter of fact, a close look at the

Ž � 	.first part of the proof of 2.9 as is discussed in 12 reveals that if
Ž . � � Ž 1 . Ž . Ž . Ž .� � � , then Ý � e � x � NN l , X for all x � c X . Con-i X i�1 i i i i 0 s

� � Ž 1 . Ž 1 . Ž . Ž . Ž .versely, if Ý � e � x � NN l , X � PP II l , X for all x � c X ,i�1 i i i i 0 s
Ž .then by Theorem 2.8 the sequence � x is in the range of an X-valuedi i

Ž . Ž . Ž . Ž .b�-measure for all x � c X �thus � � � in this case. Thus wei 0 s i X
have:

COROLLARY 2.11. Let X be a Banach space. Then
�

� 1� � m X* � � e � x � NN l , XŽ . Ž . Ž .Ýi i i i
i�1

Ž . Ž . Ž .for all x � c X .i 0 s

In particular, this says that

COROLLARY 2.12. Let X be a Banach space. Then
�

� � 1� � m X** � � e � x � NN l , X*Ž . Ž . Ž .Ýi i i i
i�1

Ž � . Ž . Ž .for all x � c X* .i 0 s

Ž . Ž .We know from Lemma 1.3 that m X** � m X . The proof of the
Ž Ž . Ž .following lemma which is the key to proving that indeed m X** � m X

.holds is similar to the proof of Lemma 1.7.

Ž . Ž .LEMMA 2.13. Let � � m X . Consider the bounded linear operatori

�
�1P : K c , X � l X : e � x � � x .Ž . Ž . Ž .Ý0 s n n n n

n�1

�Ž . Ž . Ž . Ž . Ž .P* maps l X* into II X, c . Moreo�er, P* maps c X* into NN X, cs 0 0 s 0
and

�
� � �P* x * � � e � xŽ .Ž .Ž . Ýi i i i

i�1

Ž � . Ž . Ž .for all x � c X* .i 0 s

THEOREM 2.14. Let X be a Banach space. Then

m X � m X** .Ž . Ž .
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Ž . Ž . Ž . Ž .Proof. We need only prove that m X � m X** . Let � � m X . Iti
follows from Lemma 2.13 that

�
� � 1� e � x � NN l , X*Ž .Ý i i i

i�1

�Ž . Ž . Ž . Ž . Ž .for all x � c X* . Hence � � m X** by Corollary 2.12.i 0 s i

COROLLARY 2.15. Let X be a Banach space. The following are equi�alent:

Ž . Ž . Ž .i � � m Xi

Ž . � � � Ž 1 . Ž � . Ž . Ž .ii Ý � e � x � NN l , X* , for all x � c X*i�1 i i i i 0 s

Ž . Ž .iii � � �i X *

Ž . Ž � . Ž � .iv For e�ery null sequence x in X*, the sequence � x lies in thei i i
range of some X*-�alued measure with bounded �ariation.

Ž .3. �, � -SUMMING MULTIPLIERS

Throughout this section we assume that the scalar sequence spaces �
and � are normal symmetric BK-spaces with the AK-property.

Ž . Ž .DEFINITION 3.1. A scalar sequence  is said to be a �, � -summingi
Ž . Ž . Ž . Ž .multiplier for a Banach space E if  x � � E for all x � � E .i i s i w

Put

m E �  � w :  x � � E , 
 x � � E� 4Ž . Ž . Ž . Ž . Ž . Ž .� , � i i i s i w

� ��  � w :  x � � , 
 x � � E .� 4Ž . Ž . Ž .Ž .i i i i w

Ž . � Ž . Ž .To see that m E � l , consider arbitrary � � m E and let� , � i � , �

T : � E � � E :: x � � x � n .Ž . Ž . Ž . Ž . Ž .n w s i i i

Each T has closed graph, and hence is a bounded linear operator. Andn

� � � � � � � � � � � �� T x � � x � n � � xŽ . Ž .Ž . Ž .Ž .Ž .Ž . � �� n i i i i i

� 4for all n. The set T : n � 1, 2, . . . is thus pointwise bounded, and hencen
also uniformly bounded. There exists M � 0 such that

� T x � M� xŽ . Ž .Ž . Ž .Ž .Ž .� n i � i

� �for all n. In particular, for any x � E such that x � 1, we have

� � � � � � � �� � 0, . . . , 0, � x , 0, 0, . . . � MŽ . �i i
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Ž .for all i � 1, 2, . . . . Since the sequences in � E are norm bounded in E,w
Ž .it is easy to see that � � m E .� , �

Ž .On the vector space m E we define a norm by� , �

� � � sup �  x : � x � 1� 4Ž . Ž . Ž .Ž . Ž .� , �i � i i � i

� � � �� sup  x : � x � 1 .� 4Ž .Ž . Ž .�i i � i

A standard argument shows that

Ž Ž . � � .THEOREM 3.2. m E , � is a complete normed space.� , �� , �

The proof of the following generalisation of Theorem 1.4 will not be
Ž .discussed in full detail since it is similar to the proof of Theorem 1.4. , but

for the sake of completeness we present an outline of the proof in this
general context.

Ž .THEOREM 3.3. Let � be a bounded scalar sequence. If � is reflexi�e,i
Ž . Ž . Ž . �then � � m E* if and only if the operator � � E: � � Ý � � xi � , � i i�1 i i i

Ž . �Ž .is integral for all sequences x � � E .i s

Ž . Ž .Proof. Let � � m E* . As before, leti � , �

�
� �P : K E, � � � E* :: P x � e � � x ,Ž . Ž . Ž .Ýs n n n nž /

n�1

Ž . Ž . Ž � 	.now using the isometry K E, � � � E* cf. 8 . Then P is linear andc
bounded and

P*: �� E** � K E, � * � II � , E** ::Ž . Ž . Ž .s

x � e� � � x � II � , E**Ž . Ž .Ž . Ýn n n n
n

Ž . �Ž . Ž � .Ž . Ž . �Ž .for all x � � E . Since Ý e � � x � � E for all x � � E ,n s n n n n n s
we have

e� � � x � II � , E , 
 x � �� E .Ž . Ž . Ž .Ý n n n n s
n

� Ž .Since � has AK , it follows conversely that if � � E: � � Ý � � xi i i i i
Ž . �Ž .is integral for all x � � E andi s

Q : �� E � II � , E :: Q x � e� � � x � II � , E ,Ž . Ž . Ž . Ž .Ž . Ýs n n n n
n

Ž .then Q is continuous into the isometric subspace NN �, E . Thus

Q*: L E, � � � E*Ž . Ž .s
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Ž . Ž .is bounded. Using the trace duality and the fact that � E* � L E, �w
Ž � 	.cf. 8 , we have

� x� � Q* x� � � E*Ž . Ž . Ž .Ž .n n n s

�Ž . Ž .for all x � � E* .n w

Ž .In general the BK-space m E may not have the AK-property. The� , �

last part of this section is devoted to an attempt to find some conditions on
Ž .E and the relevant sequence spaces that will ensure that m E has AK.� , �

Ž . Ž Ž .. �Ž . cLet us denote the unit balls in � E and � E * � � E* by B andc s s �
� Ž .�B , respectively. The unit ball in m E will be denoted by B .� � , � � , �

Using the AK-property of the sequence space �, it is easy to see that

Ž . Ž .LEMMA 3.4. For all  � m E , we ha�ei � , �

� � � sup �  x : x � � E , � x � 1 .� 4Ž . Ž . Ž . Ž . Ž .Ž . Ž .� , �i � i i i c � i

Ž .THEOREM 3.5. m E has the AK-property if and only if the set� , �

² : c �
�A � x , a : x , a � B � B� 4Ž . Ž .Ž . Ž .i i i i � �

Ž Ž .� Ž ..is � m E , m E relati�ely compact.� , � � , �

Ž .� Ž . Ž .Proof. First we show that A � m E . Let � � m E and� , � i � , �

Ž² :.x , a � A. Then, using the sign-function and the fact that � is normali i
and symmetric, it follows that

�

� ² : � �� x , a � � � x � a � �.Ž . Ž .Ž . Ž .Ý i i i � i i � i
i�1

Ž . Ž . Ž .�Since � � m E was arbitrarily chosen, it follows that A � m E .i � , � � , �

Ž . Ž . cNext we show that A� � B . Let � � A�. For any x � B we have� , � i i �

�

�² : � ² :� � x � sup � x , a � sup � x , a � 1.Ž . Ž . Ž .Ž . Ý� i i i i i i i i
ŽŽ .. ŽŽ ..� �� a �1 � a �1 i�1� i � i

Thus A� � B .� , �

Ž . Ž² :.Conversely, if � � B and x , a � A, theni � , � i i

�

² : �² : � �� x , a � � x , a � � � x � a � 1,Ž . Ž . Ž . Ž .Ž . Ž .Ý i i i i i i � i i � i
i�1

thereby establishing the inclusion B � A�.� , �

Ž .Assume that A is weak* compact in the Kothe duality . Since A� is a¨
Ž Ž . Ž .�. Ž� m E , m E neighbourhood of the origin where � denotes the� , � � , �
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.topology of uniform convergence on the weak* compact sets , the equality
A� � B implies that the norm topology is weaker than the �-topology on� , �

Ž . Ž � 	.m E . By a result of G. Bennett cf. 11, Theorem 2.1, p. 188 the� , �

Ž .normal sequence space m E has AK with respect to this �-topology.� , �

Ž . Ž .Hence m E has AK with respect to its weaker norm topology. In� , �

Ž . Ž .�particular, this shows that m E * � m E .� , � � , �

Ž . Ž .Conversely, let m E have the AK-property. Then m E * �� , � � , �

Ž .� 	m E . Since A� � B , we have A � B , which implies that A is� , � � , � � , �
�Ž Ž . Ž ..equicontinuous. Thus A is � m E , m E relatively compact.� , � � , �

Consider the bilinear mapping

��c ² :�� : B � B � m E :: x , a � x , a .Ž . Ž . Ž . Ž .Ž .� � � , � i i i i

c � Ž Ž . Ž . .�On B and B consider the restrictions of the � � E , � E * and� � c c
Ž �Ž . Ž .. Ž .�� � E* , � E topologies, respectively, and on m E consider thes s � , �

Ž Ž .� Ž ..� m E , m E topology. We show that � is separately continu-� , � � , �

Ž � . Ž . c Ž . � Ž . Ž .�ous. Let x � x in B weakly. Fix a � B and � � m E .i i i i � i � i � , �

Because of

� � �

² : �² : � �² : �y , � a � y , � a � � y , a � �Ý Ý Ýi i i i i i i i i
i�1 i�1 i�1

Ž . Ž . � 	 Ž . Ž .for all y � � E , it follows from a result in 9 that � a � � E *.i w i i c
Therefore

�
� �² : ² : ² : ² :� x , a � x , � a � x , � a � � x , a .Ž . Ž . Ž .Ž .Ý Ýi i i i i i i i i i i i

i i

Ž . Ž .Since this holds for all � � m E , we have thati � , �

�
� �² : ² :� x , a � x , a � x , a � � x , aŽ . Ž . Ž .Ž . Ž .Ž . Ž .Ž .i i i i i i i i

Ž .�in m E with the weak*-topology. Therefore � is continuous in the� , �

first component.
Ž � . Ž . � Ž . Ž .�Similarly, let a � a in B . For all � � m E we havei i i i � i � , �

�
� �² : ² : ² :� x , a � � x , a � � x , aŽ . Ž . Ž .Ž .Ý i i i i i i i i i

i

² :� � x , a .Ý i i i
i

Thus it follows that

�
� �² : ² :� x , a � x , a � x , a � � x , aŽ . Ž . Ž .Ž . Ž .Ž . Ž .Ž .i i i i i i i i



MULTIPLIERS AND APPLICATIONS 185

in the weak*-topology. Therefore � is continuous in the second compo-
nent.

The separately continuous � maps compact sets of the form K � K1 2
Ž .with both K and K compact, onto compact sets. If � E is reflexive,1 2 c

then the unit ball Bc is weakly compact. The set B�
� is weak* compact.� �

Ž c � .�So A � � B � B is weak* compact. Thus from Theorem 3.5 it is clear� �

that

Ž .THEOREM 3.6. m E has AK if one of the following holds:� , �

Ž . Ž .a � E is reflexi�e.c

Ž . Ž Ž . Ž .�.b The dual pair m E , m E is barrelled.� , � � , �

If both � and E are reflexive Banach spaces, then we know that
�Ž . Ž . Ž . Ž . c

�� E � L �, E is reflexive if and only if L �, E � K �, E . Let Bw �
�Ž .denote the unit ball in � E . It follows that:c

LEMMA 3.7. Let � be a reflexi�e BK space with AK. The set Bc
� is weakly�

�Ž . �Ž . �Ž .compact � � E is reflexi�e � � E � � E and E is reflexi�e.c c w

Thus we conclude that:

Ž .THEOREM 3.8. If E and the BK space � with AK are both reflexi�e
Ž . Ž . Ž .�Banach spaces such that L �, E � K �, E , then m E has the AK-� , �

property.
1 1 � 	For 1 � p, q � � such that � � 1, it follows from a result in 2 thatp q

L l p , E � K l p , E � l q E � l q EŽ . Ž . Ž . Ž .w c

� l q E 
 c E .Ž . Ž . Ž .w 0 s

1 1COROLLARY 3.9. Let 1 � p � � and suppose � � 1. If E is reflexi�ep q
q Ž . Ž . Ž . Ž .and l E 
 c E , then m E has the AK-property for all 1 � r � �.w 0 s p, r
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