



(Knowledge for Development)

# **KIBABII UNIVERSITY**

# UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER MAIN EXAMINATION FOR THE DEGREES OF BACHELOR OF SCIENCE

COURSE CODE: STA 422

COURSE TITLE: SEQUENTIAL ANALYSIS

**DATE**: 01/09/2022 TIME: 9:00 AM - 11:00 AM

### INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

### **QUESTION ONE (30 MARKS)**

- a) Define the term Sequential Analysis. (2 Marks)
- b) Briefly elaborate 2 applications of sequential analysis (4 Marks)
- c) List the 3 key decision rules that are in sequential testing (3 Marks)
- d) Let  $B_n$  denote the subset of n-dimensional space in which  $A < \ell_k \ (\mathcal{E}_1 \ , \ ..., \ \mathcal{E}_k) < B$  for k = 1,2,..., n-1 and  $\ell_k \ (\mathcal{E}_1 \ , \ ..., \ \mathcal{E}_n) \ge B$  so that  $\{N=n, \ \ell_n \ge B\} = \{(x_1, ...x_n) \in B_n\}$ . Show that  $\alpha \approx \frac{1-A}{B-A}$  and  $\beta \approx \frac{A(B-1)}{B-A}$  (6 Marks)
- e) Let  $x_1, ... x_n$  be independent and identically distributed random variables with finite mean  $\mu$ . Let M be any integer-valued random variable such that  $\{M = n\}$  is an event determined only by  $x_1, ... x_n$  for all n=1,2,..., and assume that  $E(M) < \infty$  through monotone convergence theorem prove the Wald's equation (6 Marks)
- f) Let  $\theta$  be the probability of an item being defective. At the n<sup>th</sup> stage, take one more observation if  $B < \frac{\theta_1^r (1-\theta_1)^{n-r}}{\theta_0^r (1-\theta_0)^{n-r}} < A$ . If  $\theta_0 = 0.5$  and  $\theta_1 = 0.8$ , solve for A and B and hence determine the continue-sampling region. (5 Marks)
- g) If the probability that an individual will suffer a bad reaction from injection of a given serum is 0.001, determine the probability that out of 2000 individuals,
  - (i) exactly 3, (2 Marks)
  - (ii) More than 2, individuals will suffer a bad reaction. Assume *X* is Poisson distributed (2 Marks)

### **QUESTION TWO (20 MARKS)**

- a) Consider the Problem of testing  $\theta = \theta_0$  versus  $\theta = \theta_1 > \theta_0$  in a Bernoulli population.
  - i. Derive the equation for  $\theta$  (5 Marks)
  - ii. If  $\theta_1 = 0.8$ ,  $\theta_0 = 0.5$  and  $\alpha = \beta = 0.01$  compute the values of  $\theta$  and Operating Characteristic function in the table below. (5 Marks)

| h  | -∞ | -1 | 0 | 1 | ∞ |
|----|----|----|---|---|---|
| θ  |    |    |   |   |   |
| OC |    |    |   |   |   |

b) By Wald's likelihood ratio theorem derive the stopping time inequality of any sequential hypothesis. (10 Marks)

## **OUESTION THREE (20 MARKS)**

- a) The sample size needed to reach a decision in a sequential or a multiple sampling plan is a random variable N. Assuming P(Z = 0) < 1 show that the moment-generating function of N is finite and hence derive the expectation equation of this distribution.(10 Marks)
- b) Using Wolfowitz method show that E ( $\ln (\Lambda_N) = E(N)E(Z)$  (10 Marks)

# **QUESTION FOUR (20 MARKS)**

a) The number of miles an automobile tire lasts before it reaches a critical point in tread wear can be represented by a pdf

$$f(x) = \begin{cases} \frac{1}{30}e^{-\frac{x}{30}}, & for \ x > 0\\ 0, & otherwise \end{cases}$$

Find the expected number of miles (in thousands) a tyre would last until it reaches the critical tread wear point. (10 Marks)

b) Prove the (weak) law of large numbers for Bernoulli trials by Chebyshev's inequality (10 Marks)

# **QUESTION FIVE (20 MARKS)**

a) A function h(q) is estimable unbiasedly if and only if it can be expanded in Taylor's series in the interval  $|q| \le 1$ . Prove that if h(q) is estimable, then its unique unbiased estimator is given by

$$g(\gamma_k) = \frac{(c-1)!}{(k+c-1)!} \frac{d^k}{dq^k} \left[ \frac{h(q)}{(1-q)^c} \right]_{q=0}, k = 0,1,2,...$$
(10 Marks)

b) Let  $\theta = (\sigma^*/\sigma)^2$ . Then as n gets large, in probability

$$\frac{M\theta}{n_1} \to \begin{cases} 1 & \text{when } H_0 \text{ is true} \\ 1 + \frac{\delta^{*2}}{4\sigma^2} & \text{when } \mu_2 - \mu_1 = \delta^* \end{cases}$$

Show that  $\sigma^* = T_1 + T_2 = \alpha$  for all values of  $\theta$  (10 Marks)