

KIBABII UNIVERSITY

MAIN UNIVERSITY EXAMINATIONS ACADEMIC YEAR 2021/2022

THIRD YEAR SECOND SEMESTER EXAMINATIONS

BACHELOR OF SCIENCE

COURSE CODE: SPC 323

COURSE TITLE: MATHEMATICAL PHYSICS II

DATE:

05/09/2022

TIME: 2:00PM-4:00PM

INSTRUCTIONS TO CANDIDATES

Answer question ONE and any TWO of the remaining.

Time: 2 hours

KIBU observes ZERO tolerance to examination cheating

QUESTION ONE (30 MARKS)

- a) Define the following terms:
 - (i) A singular point of the function f(z)

(2 marks)

(ii) A Pole

circle

(2 marks)

(iii) Residue

(2 marks)

b) Using Cauchy's integral formula, evaluate $I = \oint_C \frac{dz}{z(z+2)}$ with C on a unit

(3 marks)

(3 marks)

- c) Compute Laurent expansion about $Z_0=0$ at $f(z)=\frac{1}{z(z-1)}$
- d) Use Laplace transforms to evaluate, $f(t) = \cosh(kt) = \frac{1}{2} \left(e^{kt} + e^{-kt} \right)$ (3 marks)
- e) Find the Fourier transform of $f(t) = e^{-\alpha |t|}$ where $\alpha > 0$, (3 marks)
- f) Use the Fourier integral to prove that (4 marks)

 $\int_{0}^{\infty} \frac{\cos ax dx}{1+a^2} = \frac{\pi}{2} e^{-x}$

g) Determine the residues of the following functions at the poles z=1 and z=-2 (4 marks)

 $\frac{1}{(z-1)(z+2)^2}$

h) Find the Laurent series about the singularity for the function: (4 marks)

 $\frac{e^{z}}{(z-2)^2}$

QUESTION TWO (20 MARKS)

a) Consider the chain decay in radioactivity $A \xrightarrow{\lambda_A} B \xrightarrow{\lambda_B} C$ where λ_A and λ_B are the disintegration constants. The equations of for the radioactive decays are:

 $\frac{dN_A(t)}{dt} = -\lambda_A N_A(t), \text{ and } \frac{dN_B(t)}{dt} = -\lambda_2 N_B(t) + \lambda_A N_A(t)$

Where $N_A(t)$ and $N_B(t)$ are the number of atoms of A and B at time t, with initial conditions $N_A(A) = N_A^0$; $N_B(0) = 0$. Apply Laplace transform to obtain $N_A(t)$ and

 $N_B(t)$, the number of atoms of A and B as a function of time t, in terms of N_A^0 , λ_A and λ_B (10 marks)

b) Consider the radioactive decay:

$$A \xrightarrow{\lambda_A} B \xrightarrow{\lambda_B} C$$
 (stable)

The equations for the chains are:

$$\frac{\mathrm{d}N_A}{\mathrm{d}t} = -\lambda_A N_A \tag{1}$$

$$\frac{\mathrm{d}N_B}{\mathrm{d}t} = -\lambda_B N_B + \lambda_A N_A \tag{2}$$

$$\frac{\mathrm{d}N_C}{\mathrm{d}t} = +\lambda_B N_B \tag{3}$$

with initial conditions $N_A(0) = N_A^0$; $N_B(0) = 0$; $N_C(0) = 0$, where various symbols have usually meaning. Apply Laplace transforms to find the growth of C. (10 marks)

QUESTION THREE (20 MARKS)

a) The Bessel function $J_n(x)$ is given by the series expansion (7 marks)

$$J_n(x) = \frac{\sum (-1)^k (x/2)^{n+2k}}{k! \Gamma(n+k+1)}$$

Show that $\frac{d}{dx} \left[\chi^n J_n(x) \right] = \chi^n J_{n-1}(x)$

b) Given that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$, obtain the formulae:

(i)
$$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$$

(7 marks)

(ii)
$$J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}\cos x}$$

(6 marks)

(20)

QUESTION FOUR (20 MARKS)

a) Show that the Legendre polynomials have the property

(10 marks)

$$\int_{-l}^{l} P_n(x) P_m(x) dx = \frac{2}{2n+1}, \text{ if } m = n$$
= 0, if $m \neq n$

b) Show that for large n and small θ , $p_n(\cos\theta) \approx J_0(n\theta)$

(10 marks)

QUESTION FIVE (20 MARKS)

a) Develop the Fourier series expansion for the saw-tooth (Ramp) wave f(x)=x/L, -L < x < L as in Figure 1 below (10 marks)

Figure 1

b) Find the Fourier transform of:

(10 marks)

$$f(x) = \begin{cases} 1, & |x| < a \\ 0, & |x| > a \end{cases}$$