

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER MAIN EXAM

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: SCH 413

COURSE TITLE:

QUANTUM CHEMISTRY

DURATION: 2 HOURS

DATE: 05/09/2022

TIME: 9:00AM-11:00AM

INSTRUCTIONS TO CANDIDATES

Answer **QUESTION ONE** (Compulsory) and any other two (2) Questions.

Indicate answered questions on the front cover.

Start every question on a new page and make sure question's number is written on each page.

This paper consists of 3 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

QUESTION ONE (30 Marks)

- 1a). Define the following terms as used in quantum chemistry. (5marks)
 - i. Wavefunction
 - ii. Black body
 - iii. Photoelectric effect
 - iv. Operator
 - v. Heisenberg uncertainty principle.
- b). A particle of mass $2.00 * 10^{-26}$ g is in a one-dimensional box of length 4.00 nm. Find the frequency and wavelength of the photon emitted when this particle goes from the
- n = 3 to the n = 2 level. (5marks)
- c). State four characteristics of the photoelectric effect (4marks)
- d). Give four failures of classical physics (4 marks)
- e). State the Significance of ψ and ψ^2 then explain the Born interpretation of the wavefunction, (2 marks)
- f). The uncertainty in the position and velocity of a particle are 10^{-10} m and 5.27×10^{-24} m sec⁻¹ respectively. Calculate the mass of the particle. (4marks)
- g) Giving examples briefly explain impotance of Hermitian operators (3 marks)
- h). State the two main origins of zero-point energies for both particle in a box and the harmonic oscillators. Why can't n≠O while v=0 for a particle in a box and for a harmonic oscillator respectively.

 (3marks)

QUESTION TWO (20 Marks)

- 2 a). Find the probability of finding the particle in the first tenth (from x = 0 to $x = \frac{L}{10}$) of the box for n = 1, 2 and 3 states. (8 marks)
- b). Explain the comparison between classical mechanics and quantum mechanics. (8 marks)
- c). State characteristics of the Schrödinger's Wave Equation. (4marks)

OUE	STION	THREE ((20)	Marks)	ì
V CL	O I I O I I	TILL !		ITA COL ALL	,

3 a). Show that $m \frac{d^2X}{d^2} + kX = 0$ also applies to mass m ₁ connected to mass m ₂ by a	
spring exhibiting harmonic motion.	(10 marks)
b). Demonstrate that the ground-state harmonic oscillator wave-function is either	
i. Normalized with the first excited state.	(4 marks)
ii. Orthogonal with the first excited state.	(3
marks)	
c). Calculate the ground-state energy for an electron that is confined to a potential	well with a
width 0.2 nm.	(3
marks)	
QUESTION FOUR (20 Marks)	
4 a). Derive the Schrödinger's wave equation. marks)	(10
b). Explain the five postulates of quantum mechanics. marks)	(10
QUESTION FIVE (20 Marks)	
5 a) Calculate the ionization energy Ei for hydrogen like atom of H, He ⁺ , Li ²⁺ and Be ³	* whose
Ei=13.606 Ev.	(4 marks)
b). Determine the term symbol for a hydrogen atom ignoring spin orbit coupling in state, b) the 2s orbital, c) the 2p orbital, and d) a 3d orbital.	n a) ground- (8 marks)
c). Determine the trajectory of a projectile fired from a cannon whereby the muzangle from the horizontal x-axis and leaves the muzzle with a velocity of Assume that air resistance. marks)	
d). Explain what will happen when the walls of the one-dimensional box are sudder (2marks)	nly removed
END	