

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF CHEMISTRY

COURSE CODE: SCH 327

COURSE TITLE: SYMMETRY, MOLECULAR STRUCTURE AND

PROPERTIES

DURATION: 2 HOURS

DATE: 02/09/2022 TIME: 9:00aM-11:00aM

INSTRUCTIONS TO CANDIDATES

Answer **QUESTION ONE** (Compulsory) and any other two (2) Questions.

Indicate answered questions on the front cover.

Start every question on a new page and make sure question's number is written on each page.

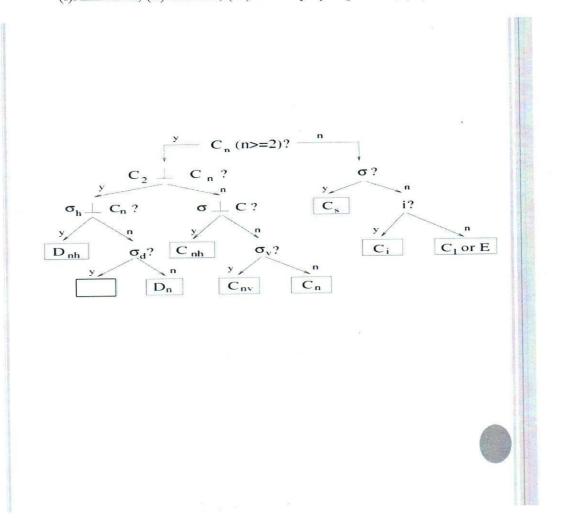
This paper consists of 5 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

QUESTION ONE.COMPULSORY (30MARKS)

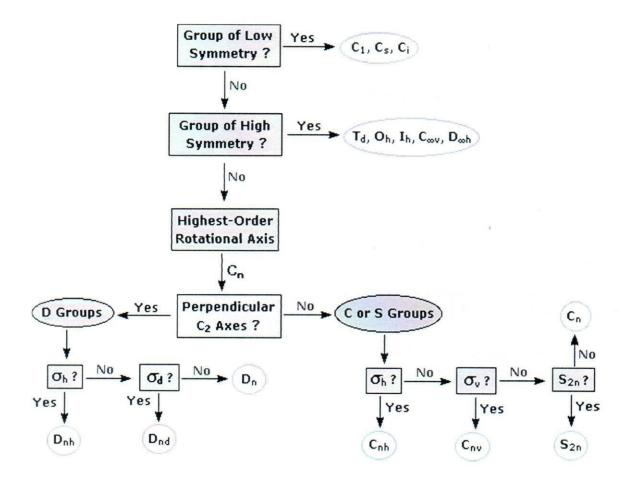
(a) Define the term molecular degrees of freedom (4marks) (b) Differentiate between a symmetry operation and a symmetry element (4marks) (c) Calculate the number of vibrational modes in CO₂ and CH₄ (4 (d) List the selection rules for Raman and IR active vibrations (2marks) (e) Define the term vibrational spectroscopy and hence differentiate between translational and rotational modes (4marks) (f) When radiation of a particular frequency fall on a molecule, some radiation is scattered. Name the two types of scattered radiation (2marks) (g) Explain how an indistinguishable configuration comes about as a result of rotation and reflection in symmetry (3 marks) (h) Draw the structures of PCl, NH₃ and BCl₃ according to VSEPR theory. (5 marks) (i) Explain the symmetry criteria that allow a molecule to be optically active (2marks) **QUESTION TWO** (a) Explain how a molecule is assigned a point group (2marks) (b) List the symmetry operations and the corresponding symmetry elements of the point groups (3marks) (c) How do the rotation axes and planes of symmetry in cis- and trans-N₂F₂ differ? marks). (d) Draw the structures of each of the following species and confirm that each possesses a center of symmetry: CS₂, [PF₆], XeF₄, I₂, [ICl₂] (10 marks)

QUESTION THREE


- (a) Assign a point group to each member in the series (i) CCl₄, (ii) CCl₃F, (iii) CCl₂F₂, (iv) CClF₃ and (v) CF₄. (5 marks)
- (b) Determine the number of degrees of vibrational freedom for each of the following: (i) SO₂; (ii) SiH₄; (iii) HCN; (iv) H₂O; (v) BF₃ (5 marks)
- (c) Explain what is meant by (i) Chiral (ii) Enantiomer (iii) Helical Chain (3 marks)
- (d) How many normal modes of vibration are IR active for (i) H₂O, (ii) SiF₄, (iii) PCl₃, (iv) AlCl₃, (v) CS₂ and (vi) HCN? (6 marks)
- (a) The point group of $[AuCl_2]^-$ is $D\infty h$. What shape is this ion? (1 mark)

QUESTION FOUR

- (a) Using VSEPR theory, draw the structures of CF₄, XeF₄ and SF₄. Assign a point group to each molecule. Show that the number of degrees of vibrational freedom is independent of the molecular symmetry. (10 marks)
- (b) How many degrees of freedom do each of the following possess: SiCl₄, BrF₃, POCl₃ (3 marks)
- (c) The IR spectrum of SF₂ has absorption at 838, 813 and 357cm⁻¹. Explain why these data are consistent with SF₂ belonging to the C_{2v} rather than D∞h point group. (3 marks)
- (d) The vibrational modes of XeF₂ are at 555, 515 and 213cm⁻¹ but only two are IR active. Explain why this is consistent with XeF₂ having a linear structure. (4 marks)


QUESTION FIVE

- (a) Use the flow chart below to assign the point groups to the following molecules (10 marks)
 - (i)Ammonia, (ii) acetone, (iii) dimethylcyclopentane, (iv) ethanediol, (v) propanediene

- (b) The [PdCl₄]²⁻ ion gives rise to three absorptions in its IR spectrum (150, 321 and 161 cm⁻¹. Rationalize why this provides evidence for a D_{4h} rather than a T₄ structure. (5 marks)
- (c) The IR spectrum of gaseous ZrI₄ shows absorption at 55 and 254 cm⁻¹. Explain why this observation is consistent with molecules of ZrI₄ having T₄ symmetry. (5 marks)

Additional data for use

