

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF BSC (CHEMISTRY)

COURSE CODE: SCH 323

COURSE TITLE: INSTRUMENTAL ANALYTICAL CHEMISTRY AND

QUALITY CONTROL

DATE: 29/08/2022 **TIME**: 2:00PM-4:00PM

INSTRUCTIONS TO CANDIDATES:

- Answer Question ONE (Compulsory) and any other TWO (2) questions

TIME: 2 Hours

Constants: $h = 6.626 \times 10^{-34} \text{ Js}$; $c=3.0 \times 10^8 \text{ ms}^{-1}$

This paper consists of 4 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

Question 1 [30 Marks]

a.	Differentiate between gravimetry and titrimetry and spectroscopy	[3 Marks]
b.	Explain the importance of analytical instrumentation	[2 Marks]

c. Contrast classical and instrumental techniques as used in analytical chemistry

[6 Marks]

d. Explain the choice of gas used in most spectrometers [2 Marks]

e. compare column chromatography and TLC [4 Marks]

f. Define back titration [2 Marks]

g. Thermogravimetric studies of a carbon black filled rubber sample is performed in inert atmosphere up to 950 °C then the atmosphere is quickly changed to air. The observed weight loss is ~ 66.41 % up to 500 °C and the mass becomes constant, a further mass loss is observed between 1300 °C and 2800 °C . Explain the decomposition of rubber.[4 Marks]

h. Discuss qualitative and quantitative measurements [4 Marks]

i. Highlight three analytical techniques which apply X-ray radiation [3 Marks]

Question 2 [20 Marks]

When separating two substances, X and Y, on a 30.0 cm column. A student obtained a chromatogram that gave retention times of 15.80 and 17.23 min for X and Y, respectively, and an elution time of an unretained compound of 1.60 min. The base peak widths for X and Y were 1.25 and 1.38 min, respectively.

Calculate the following

- a. Standard deviation of each peak [2 Marks]
- b. average number of theoretical plates for the column [5 Marks]
- c. plate height [2 Marks]
- d. resolution of X and Y and determine whether baseline separation was achieved
 [3 Marks]

e. length of column that would be required to achieve a resolution of 1.5

[8 Marks]

Question 3 [20 Marks]

a. Explain the difference between normal and reverse phase HPLC and the advantages of each

[6 Marks]

b. Describe the procedure for obtaining a HPLC chromatogram

[4 Marks]

c. During a routine analysis it was observed that the signal for an interferent I in the analysis of analyte A was 6 units when that of an equimolar solution of A was 40 units.

i. Calculate the selectivity coefficient of the method. [4 Marks]

ii. If the concentration of A must be known with an accuracy of $\pm 0.50\%$, what is the maximum relative concentration of A that can be present? [6 Marks]

Question 4 [20 Marks]

- a. Discuss the importance of quality control in chemical analysis
 b. Calculate the potential for the following reactions
 [4 Marks]
 - i. $Zn(s) + Pb^{2+}(aq) \rightarrow Zn^{2+}(aq) + Pb(s)$
 - ii. $Al(s) + Fe^{3+}(aq) \rightarrow Al^{3+}(aq) + Fe(s)$
- c. The concentration of copper in a sample of sea water is determined by anodic stripping voltammetry using the method of standard additions. The analysis of a 50.0 mL sample gives a peak current of 0.886 μ A. After adding a 5.00 μ L spike of 10.0 mg/L Cu²⁺, the peak current increases to 2.52 μ A. Calculate the μ g/L copper in the sample of sea water. [10 Marks]

Question 5 [20 Marks]

- a. Draw and label the main parts of a spectrophotometric instrument [10 Marks]
- b. The %w/w Γ in a 0.67 g sample is determined by a Volhard titration. After adding 50.00 mL of 0.056 M AgNO₃ and allowing the precipitate to form, the remaining silver is back titrated with 0.053 M KSCN, requiring 35.14 mL to reach the end point. Calculate
 - i. Moles of I [6 Marks]
 - ii. Concentration (%w/w) of Γ in the sample. [4 Marks]

_	
6-0	
A CO	
140	
1	
	-
	-
	-

PERIODIC TABLE OF THE ELEMENTS	13 14 15 16 17 He IIIA IVA VA VIA VIIA 4.00	6 8 2	B C N O F Ne	10.81 12.01 14.1 16.00 19.00 20.18	14 15 16 17	LZ AI Si P S CI	WIIIB IIB 26.98 28.09	26 27 28 29 30 31 32 33 34 35	Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr	69.72 72.59 74.92 78.96 79.90	44 45 46 47 48 49 50 51 52 53	Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe	101.1 102.91 106.42 107.87 112.41 114.82 118.71 121.75 127.60 126.91	76 77 78 79 80 81 82 83 84 85	Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn	195.08 196.97 200.59 204.38 207.2 208.98 (209) (210)	108	Bh Hs Mt Ds Rg	(268) (271)
EM	13 IIIA	3	<u>B</u>	10.8	13	[A]	26.98	31	Ü	69.7.	49	In	114.8			_			
EL						17	9	30	Zn	62.39	48	S	112.41	80	Hg	200.59			
THE						= !	89	29	Cn	63.55	47	Ag	107.87	79	Au	196.97	111	Rg	(272)
OF 1						10	Г	28	Z	58.69	46	Pd	106.42	78	Pt	195.08	110	Ds	(172)
ILE (6	A IIII	27	ပိ	58.93	45	Rh	102.91	77	Ir	192.2	601	Mt	(568)
LAB	JODIC IAB				∞	Ц	26	Fe	55.85	44	Ru	101.1	92	Os	190.2	108	Hs	(277)	
)IC				7	911	25	Mn	59.94	43	Tc	(86)	75	Re	186.21	107	Bh	(264)		
IOL					9	a A	24	Ç	52.00	42	Mo	95.94	74	*	183.85	106	Sg	(366)	
PER						w 5	9	23	>	50.94	41	S	92.91	73	Ta	180.95	105	Dp	(292)
						4 2	a A	22	Ţ	47.90	40	Zr	91.22	72	Hf	178.49	104	Rf	(261)
						e [<u>a</u>	21	Sc	44.96	39	Y	88.91	57	*La	138.91	68	†Ac	227.03
	1 5 S	4	Be	9.01	12	Mg	24.30	20	Ca	40.08	38	Sr	87.62	99	Ba	137.33	88	Ra	226.02
		-		_				61		39.10	37			55		132.91			