

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE IN

MATHEMATICS

COURSE CODE:

MAP 322

COURSE TITLE:

GROUP THEORY II

DATE: 29/08/2022

TIME: 2:00 PM - 4:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question ONE and Any TWO Questions

TIME: 2 Hours

QUESTION ONE (30MARKS)

- a. Define the following
 - i. Center of a Group (2marks)
 - ii. P-groups (2marks)
 - iii. Normalizer (2marks)
- b. State the following
 - i. First Sylow Theorem (2 marks)
 - ii. Second Sylow Theorem (2 marks)
- c. Determine
 - i. The center of D₄ (2marks)
 - ii. Conjucacy classes of D₄ (3marks)
- d. Let G be a group of order pⁿ where p is prime. Show that G has a non-trivial center

(10 marks)

e. Determine the order of A₅. Hence the order of its subgroups (5 marks)

QUESTION TWO (20MARKS)

- a. Define the following sets
 - i. Chief series (2marks)
 - ii. Soluble group (2marks)
- b. Show that all finite abelian groups are soluble (8marks)
- a. Show that every finite group G has a composition series (8marks)

QUESTION THREE (20MARKS)

- a. Define the following
 - i. Nilpotent group (2marks)
 - ii. Central series (2marks)
- b. Show that If G is a finite group and P is a Sylow p-subgroup of G then $N_G(N_G(P)) = N_G(P)$ (10marks)
- c. Show that a group G is nilpotent if and only if it has a central series (6marks)

QUESTION FOUR (20MARKS)

- a. State the following theorems
 - i. The Fundamental Theorem of Finitely Generated Abelian Groups (3marks)
 - ii. Fundamental Theorem of Finite Abelian Groups (3marks)
- b. Show that a finite abelian group is a p-group if and only if its order is a power of p. (7marks)
- c. Classify all abelian groups of order $540 = 2^2.3^3.5$ using the fundamental theorem of finite abelian groups (7marks)

QUESTION FIVE (20MARKS)

- a. Define the following
 - i. External direct product

(2marks)

ii. Internal direct product

(2marks)

- b. Show that if G is the internal direct product of H and K, then G is isomorphic to the external direct product $H \times K$ (8marks)
- c. Let H and K be groups and let $\rho: K \longrightarrow Aut(H)$ be a group homomorphism. Show that the binary operation $(H \times K) \times (H \times K) \longrightarrow (H \times K)$ endows $H \times K$ with a group structure with identity element (1,1) (8marks).